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Abstract

We study how the development of Artificial Intelligence (AI) influences the distribution of income

between capital and labor and how this, in turn, exacerbates geographic income inequality. To investigate

this issue, we first build a theoretical framework and then analyze data from European regions dating

back to 2000. We find that for every doubling of regional AI innovation, there is a 0.7% to 1.6% decline

in the labor share, which may have decreased by between 0.20 and 0.46 percentage points from a mean

of 52% due solely to AI. This new technology is particularly detrimental to high-skill and medium-skill

labor. The impact on income distribution is driven by worsening wage and employment conditions for

high-skill labor, and by wage compression for medium- and low-skill labor. The effect of AI is not driven

by other factors affecting regional development in Europe, nor by the concentration process in the AI

market.
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1 Introduction

In recent years, income inequality has emerged as a central topic in global economic discussions,

drawing the interest of economists, policymakers, and the wider public. Many studies have shown

that inequality can have adverse effects on human capital accumulation and economic growth (Ga-

lor and Zeira, 1993; Persson and Tabellini, 1994; Galor et al., 2009). Moreover, it has significant

social implications, reducing trust and creating fertile ground for discontent and the rise of pop-

ulist movements (Piketty, 2014; Rodrı́guez-Pose et al., 2023). The trend towards higher inequality

is driven by various factors, including productive specialization, the transition towards service-

based economies (tertiarization), the quality of governance, rent-seeking, lobbying by special in-

terest groups, and rapid technological progress that benefits some more than others (Acemoglu

and Autor, 2011; Chu and Peretto, 2023; Kerspien and Madsen, 2024). Collectively, these factors

form a complex network of influences that shape the distribution of wealth and opportunity.

As far as wage inequality between low-skill workers and high-skill workers is concerned, Ace-

moglu (2002) has argued that technological progress was endogenously skill biased benefiting

high-skill workers more than low-skill workers such that an increase in the relative number of

high-skill workers led to an even higher skill premium (see also Goldin and Katz, 2009; Acemoglu

and Autor, 2011, for discussions). In addition, advances in industrial robots as a low-skill labor re-

placing technology have put downward pressure on wages of low-skill workers, exacerbating the

increase in wage inequality (Acemoglu and Restrepo, 2018; Cords and Prettner, 2022). When focus-

ing on wealth inequality, lower capital taxation over time, increasing inheritances since the 1970s,

and demographic aspects such as falling fertility that led to a concentration of inherited wealth

have all been suggested as drivers (Piketty and Zucman, 2014; Alvaredo et al., 2017). Finally, the

decrease in labor income shares across the globe has mechanically increased income inequality

because labor income is more equally distributed than capital income. For the decrease in the la-

bor income share, various reasons have been suggested in the literature such as globalization, a

declining bargaining power of labor unions, technological change that raises the productivity of

capital that is a closer substitute for labor by more than the productivity of other types of capital,

and demographic changes, which affect the relative return between labor and capital (Böckerman

and Maliranta, 2012; Elsby et al., 2013; Schmidt and Vosen, 2013; Karabarbounis and Neiman, 2014;

Bengtsson and Waldenström, 2018; Bergholt et al., 2022; Madsen et al., 2024b).

With the recent advances in Artificial Intelligence (AI), another crucial force has entered center
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stage in determining inequality (Acemoglu, 2024; Autor, 2024; Bastani and Waldenström, 2024).

AI, widely regarded as the leading disruptive force behind the Fourth Industrial Revolution, often

delivers significant productivity benefits, though these are typically delayed (Brynjolfsson et al.,

2021; Igna and Venturini, 2023). This new wave of digital technologies is being adopted not only

to boost worker productivity and firm efficiency but also to streamline production processes and

reduce costs. Early evidence from the United States shows that AI can drive product innova-

tion, leading to increases in firm sales, employment, and market valuations (Babina et al., 2024;

Alderucci et al., 2020). Similar findings from Europe highlight AI’s role in enhancing firm sales

and productivity (Czarnitzki et al., 2023; Marioni et al., 2024), as well as its importance in shap-

ing firms’ new technological capabilities (Rammer et al., 2022). While some argue that AI could

reduce inequality (Bloom et al., 2024b), others are more pessimistic (Acemoglu, 2023; Grant and

Üngör, forthcoming), particularly due to AI’s potential to reduce labor demand through automa-

tion, leading to a decoupling of productivity gains from labor market outcomes like employment

and wages (Lane and Saint-Martin, 2021). In terms of inequality, Albanesi et al. (2023) analyze

the impact of AI on labor markets in 16 European countries over the period 2011-2019, finding in-

creased employment in AI-exposed, skill-intensive occupations. In addition, Bonfiglioli et al. (2023)

analyze AI’s impact on employment across US commuting zones from 2000-2020, showing that AI

generally reduces overall employment and contributes to increased inequality across these zones.

Moreover, the development and adoption of AI tend to be geographically concentrated, driven

by factors such as the availability of specialized talent, investments in research and development,

and the presence of high-quality digital infrastructure and competencies in digital fields (Xiao and

Boschma, 2023). As a result, regional inequality, often overlooked in discussions of national in-

come disparities, could be significantly impacted, with AI hubs advancing while other regions are

left behind. This makes the regional effects of AI a critical issue that demands more attention and

analysis.

Overall, the effects of AI on inequality are complex and multifaceted. Automation driven by

AI can impact different types of labor in varied ways. For certain workers, AI may reduce de-

mand, potentially lowering the labor share if the efficiency gains primarily benefit capital owners.

In contrast, other workers may not experience the same degree of disruption. Additionally, rapid

economic growth in regions with high patent activity could exacerbate regional disparities if the

benefits are unevenly distributed. Given these potentially conflicting outcomes, a thorough in-
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vestigation is required to understand how AI patents influence both the labor share and regional

economic dynamics. This is the aim of our contribution, in which we first present a theoretical

framework to analyze the effects of AI on different types of workers and the labor income share.

We then empirically examine the theoretical implications using detailed data on regional patenting

activity and labor income across regions.

Figure 1: Labor Income Share and AI Innovation in European Regions (2001-2017)

Figure 1 illustrates the trends in the labor income share and AI patenting across European

regions from 2001 to 2017. Throughout this period, the number of AI patents per million work-

ers experienced a significant and continuous rise. In contrast, the labor income share followed

a declining trajectory, with a brief interruption marked by a temporary peak during the global

economic and financial crisis of 2007-2009. Over the longer term, the figure suggests an inverse

relationship between the growth of AI patenting and the labor income share.

Against this backdrop, we examine the relationship between technological innovation and la-

bor market outcomes to assess how AI development influences income distribution across regions.

First, we introduce a theoretical framework for evaluating the effects of AI innovation on the re-

gional labor income share. We then utilize data from European regions since 2000 to analyze the
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variation in labor income relative to regional GDP, using this as an indicator of inequality trends.

Specifically, we investigate whether regions specializing in AI innovation experience greater in-

equality and identify which skill group of workers is most affected by this trend.

We adopt two approaches of analyses. First, we implement a dynamic regression that con-

siders various economic factors that may drive the dynamics of regional labor share, including

alternative sources of technological development, accumulation of tangible and intangible assets,

productivity upgrades, structural changes, demographic shifts, market concentration, and more.

We also address a number of econometric issues that can affect estimation results, such as spatial

dependence, the count nature of patent data, dynamic adjustment, and simultaneous feedback. To

confirm that the estimated effect of AI innovation on regional labor share is causal, we additionally

employ a Difference-in-Differences (DiD) regression framework. Specifically, we assess the signifi-

cance of the change in the labor share following the introduction of new technologies, applying the

Local Projections (LP) approach (LP-DiD, Dube et al., 2023). Using the year of the first AI patent as

the ”event,” we compare changes in the labor share in AI-innovating regions with those in a con-

trol group of regions that never introduced AI patents during the sample period, finding evidence

that the investigated relationship is causal.

Our analysis reveals a significant pattern of effects: with each doubling of regional AI inno-

vation, there is an associated decrease in labor share of between 0.7% and 1.6%. The impact is

even larger—around 2.5%—when considering the years following the Great Recession (see also

Eden and Gaggl, 2018; Prettner and Strulik, 2020; Guimarães and Mazeda Gil, 2022). Overall, our

estimates suggest that the labor share may have decreased by between 0.20 and 0.46 percentage

points from a mean of 52% due to AI development. Importantly, we document that AI innovation

has heterogeneous effects across different worker skill levels, as measured by education. While AI

negatively impacts the income share of all worker categories, this effect is more pronounced for

high- and medium-skill workers compared to low-skill workers.

Regarding mechanisms, our estimates suggest that AI innovations are unrelated to the employ-

ment share of high- and medium-skill workers, but positively related to that of low-skill workers.

This implies that the reduction in the labor share for high- and medium-skill workers is mainly

driven by wage compression, while for low-skill workers, employment expansion enabled by AI

partially offsets the associated wage reduction. For high- and medium-skill workers, AI’s effect

appears to stem mainly from its substitutability/complementarity with other production inputs,
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rather than changes in labor demand induced by the concentration of new technology produc-

tion in a handful of firms and areas. For low-skill workers, however, the effect of AI on the labor

share—and the underlying drivers—remain uncertain.

The rest of the paper is structured as follows: Section 2 provides an overview of the various

contributions to the literature, explaining how our paper relates to existing research. Section 3

outlines the analytical framework and the associated prediction that we test empirically. Section 4

presents the econometric model, while Section 5 describes the dataset used in the analysis. Section

6 contains the results of the baseline specification and several robustness checks, and it explores

the effect of AI innovation across various skill levels. Finally, Section 7 provides the conclusions.

2 Contribution to the literature

With our paper, we contribute to the growing literature exploring i) the drivers behind the emer-

gence of AI technologies; ii) the effects of AI development on productivity, employment, and

wages; and iii) the consequences of AI for the evolution of regional inequality.

Research into the drivers of AI production and related innovations underscores the technical

competencies in the field of ICT and earlier digital technologies (Xiao and Boschma, 2023) and

(Igna and Venturini, 2023). Technical skills useful for developing AI can be broadly categorized

into three main areas: the development and advancement of AI, its applications, and robotics

(Samek et al., 2021). AI technologies are increasingly recognized for their potential to boost firm

productivity by enhancing efficiency, automating prediction-based tasks, and generating substan-

tial economic returns. Advances in AI, particularly in machine learning and deep learning, enable

firms to optimize production processes and decision-making systems.1 However, the productivity

gains from AI technologies might not be immediate. The so-called “modern productivity paradox”

suggests that despite advanced technology, productivity improvements can be delayed due to ad-

justment costs, complementary innovations, and necessary organizational changes (Brynjolfsson

et al., 2019).

1For example, AI can serve as a command center in manufacturing, analyzing data to fine-tune equipment per-

formance and optimize input usage (Agrawal et al., 2024). Unlike traditional automation, which relies on explicit

programming, machine learning has the potential to improve autonomously by learning patterns from data, poten-

tially surpassing older methods (Brynjolfsson and Mitchell, 2017). AI systems utilizing machine vision, for instance,

can often outperform humans in accuracy and efficiency for specific tasks (Brynjolfsson et al., 2018).
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AI’s impact on the labor market is multifaceted and differs in various respects from that of

earlier waves of automation. Similar to previous automation technologies, AI has the potential to

replace workers performing manual jobs that involve routine tasks by expanding the use of indus-

trial robots for these tasks. However, a distinctive feature of AI is its ability to enable machines

to perform cognitive tasks, which can lead to the replacement of humans in decision-making roles

(Brynjolfsson and McAfee, 2015). Therefore, the labor market effects of AI—specifically regarding

wages, employment conditions, and income distribution—are likely to change with the skill lev-

els of workers, but in a manner distinct from that of industrial robots. Earlier evidence indicates

that robots reduce the share of low-skill jobs, increase overall employment by creating new types

of work, and lead to widespread increases in productivity and wage levels (Graetz and Michaels,

2018). However, whether and how AI influences wages, employment, and, no less importantly,

income distribution remains largely unknown. Indeed, AI technologies are likely to reshape wage

structures, favoring more educated individuals, particularly those with high educational achieve-

ments in STEM fields and technical proficiency (Prettner and Strulik, 2020; Acemoglu et al., 2022;

Babina et al., 2023). Despite these advancements, the literature remains inconclusive regarding the

distributional impacts of AI technologies, especially concerning different skill levels. While some

argue that AI predominantly displaces high-skill workers (Webb, 2020; Bloom et al., 2024b), others

predict more severe short-term effects on low-skill workers in various countries (Grant and Üngör,

forthcoming). In this context, our contribution to the literature is to provide new evidence on the

distributional consequences of AI development.

We also contribute to the broader literature exploring the relationship between innovation and

income inequality, an area that has produced mixed results thus far (Akcigit et al., 2017). Several

studies have shown that patenting and other intellectual property rights, by enabling the appropri-

ation of innovation rents, can increase income inequality and the capital share of national income

(Lee and Rodrı́guez-Pose, 2013; Koh et al., 2020; Guellec, 2020). While some research suggests that

innovation exacerbates inequality at the top but promotes social mobility by introducing new in-

ventors (Aghion et al., 2019a), others argue that innovation, particularly by new market entrants,

can reduce inequality among the highest earners by fostering entrepreneurial turnover (Jones and

Kim, 2018). Recent studies have also examined how innovation rents are partly appropriated by

workers, with wage and occupational benefits unevenly distributed according to employees’ skills

and job positions (see Blundell et al., 2022 for a survey). Further research has explored how in-
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novation and inequality evolve during the transition from pre-industrial stagnation to modern

economic growth (Chu and Peretto, 2023), or how these dynamics are shaped by innovation and

monetary policies (Chu and Cozzi, 2018; Chu et al., 2019; Chu et al., 2021). Peretto and Seater

(2013) propose a theory where R&D-driven growth increases the capital share of national income

through factor-eliminating technical change. Madsen et al. (2024b) analyze the decline in the labor

share across advanced countries since 1980, attributing it to shifts in the composition of capital.

They find that rising building prices decrease the labor share due to the complementary relation-

ship between buildings and labor, while falling machinery prices increase the capital-labor ratio,

further reducing the labor share as machinery substitutes for labor. Our study extends these find-

ings by examining the impact of AI patent production on the labor share across European regions.

By focusing on emerging technologies, we show that AI advancements exacerbate the decline in

the labor share, particularly by compressing the relative wage of high-and medium-skill labor,

thereby reinforcing the broader trend of technological progress favoring capital over labor.

As far as spatial effects are concerned, technological progress, as a crucial driver of economic

development, shapes opportunities and prosperity across regions. Access to technology is a key

factor in this context (Iammarino et al., 2018): disparities in high-speed internet, digital infrastruc-

ture, and technological education significantly widen the gap between regions. Areas with inad-

equate access to these resources struggle to participate in the digital economy, which exacerbates

economic disparities. Regions lacking proper internet infrastructure face barriers in accessing on-

line markets and digital resources, limiting their growth potential (de Clercq et al., 2023). Without

this infrastructure, regions struggle to attract investment and compete in technology-dependent in-

dustries, often leading to economic activity centralizing in core regions, even though higher wages

in these areas represent a significant cost for firms (Krenz et al., 2021). Access to quality techno-

logical education and training is equally vital for building a skilled workforce capable of driving

innovation and adapting to technological advancements (Cruz-Jesus et al., 2012). Disparities in

digital literacy and skills further deepen regional inequality. Regions with more educated popula-

tions are better positioned to capitalize on technology, while others fall behind, reinforcing these

gaps. The concentration of innovation hubs in certain areas amplifies these disparities (Diemer

et al., 2022), as regions with a strong tech presence experience rapid economic growth, attracting

both investment and talent. This technological edge provides distinct advantages in innovation,

productivity, and competitiveness, but the benefits are not evenly shared. As a result, the gap be-
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tween prosperous tech hubs and less-developed regions continues to widen, perpetuating regional

inequality.

Given this context, it is crucial to explore how technological drivers of regional inequality, as

identified in the literature, interact with the development and adoption of AI. Building on these

insights, we first propose a theoretical framework for analyzing the impact of AI on wages, the

labor share, and regional inequality. We then empirically test the model’s predictions and assess

the effects of AI on regional disparities.

3 AI and the labor share: theoretical considerations

To analyze the effect of AI on the labor share, we build on Bloom et al. (2024b) who investigate the

effects of AI on the skill premium and extend their framework i) to cover regional disparities and ii)

to incorporate technological progress in AI. Suppose time t evolves in discrete steps t = 0, 1, 2, . . . ∞

and that the representative firm in region i has access to the following production function:

Yi,t = Kα
i,t

{
β3

[
β1Lθ

u,i,t + (1 − β1) (AP,i,tPi,t)
θ
] γ

θ
+ (1 − β3)

[
β2Lϕ

s,i,t + (1 − β2) (AG,i,tGi,t)
ϕ
] γ

ϕ

} 1−α
γ

,

(1)

where Yi,t denotes output, Ki,t refers to the stock of traditional physical capital (machines, assembly

lines, production facilities), Lu,i,t denotes employment of low-skill workers, Ls,i,t denotes employ-

ment of high-skill workers, Pi,t is the stock of automation capital in terms of industrial robots,

which is a close substitute for low-skill workers, AP,i,t is the productivity of robots as determined

by technological progress in automation, Gi,t is the stock of AI capital, which is a close substitute

for high-skill workers, AG,i,t is the productivity of AI as determined by technological progress in

AI (which we measure by patenting in the empirical part). α denotes the elasticity of output with

respect to the use of traditional physical capital, θ determines the elasticity of substitution between

low-skill workers and robots, ϕ determines the elasticity of substitution between high-skill work-

ers and AI, and γ determines the elasticity of substitution between high-skill intensive work and

low-skill intensive work. Realistically, the following parameter restrictions apply: θ, ϕ, γ ∈ (0, 1).

This indicates that low-skill workers and robots, high-skill workers and AI, and low-skill intensive

work and high-skill intensive work are gross substitutes but not perfect substitutes (Bloom et al.,

2024b). In addition, ϕ < θ such that industrial robots are better able to substitute for low-skill

workers than AI for high-skill workers. The main question we aim to address is how the labor
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share in region j reacts to technological progress in AI, that is, an increase in AG,i,t.

In a perfectly competitive economy, wages of low-skill workers will be equal to the marginal

product of Lu,i,t, whereas wages of high-skill workers will be equal to the marginal product of Ls,i,t.

We therefore have:

wu,i,t =
∂Yi,t

∂Lu,i,t
= (1 − α)β1β3Kα

i,tL
θ−1
u,i,t

[
β1Lθ

u,i,t + (1 − β1) (Pi,t AP,i,t)
θ
] γ

θ −1

×
{

β3

[
β1Lθ

u,i,t + (1 − β1) (Pi,t AP,i,t)
θ
] γ

θ
+ (1 − β3)

[
β2Lϕ

s,i,t + (1 − β2) (Gi,t AG,i,t)
ϕ
] γ

ϕ

} 1−α−γ
γ

,

(2)

ws,i,t =
∂Yi,t

∂Ls,i,t
= (1 − α)β2 (1 − β3)Kα

i,tL
ϕ−1
s,i,t

[
β2Lϕ

s,i,t + (1 − β2) (Gi,t AG,i,t)
ϕ
] γ

ϕ−1

×
{

β3

[
β1Lθ

u,i,t + (1 − β1) (Pi,t AP,i,t)
θ
] γ

θ
+ (1 − β3)

[
β2Lϕ

s,i,t + (1 − β2) (Gi,t AG,i,t)
ϕ
] γ

ϕ

} 1−α−γ
γ

.

(3)

The regional labor income share is then given by:

LSi,t =
wu,i,tLu,i,t + ws,i,tLs,i,t

Yi,t
=

=
(1−α)

{
β1β3Lθ

u,i,t

[
β1Lθ

u,i,t+(1−β1)(Pi,t AP,i,t)
θ
] γ

θ
−1

+β2(1−β3)Lϕ
s,i,t

[
β2Lϕ

s,i,t+(1−β2)(Gi,t AG,i,t)
ϕ
] γ

ϕ −1
}

β3

[
β1Lθ

u,i,t+(1−β1)(Pi,t AP,i,t)
θ
] γ

θ +(1−β3)
[

β2Lϕ
s,i,t+(1−β2)(Gi,t AG,i,t)

ϕ
] γ

ϕ
. (4)

We can directly infer from Eq. (4) that γ ≤ ϕ is a sufficient condition for the labor share to decrease

with progress in AI as represented by rising AG,i,t. The condition γ ≤ ϕ states that AI is a better

substitute for high-skill workers than low-skill workers are for high-skill workers and seems likely

to be fulfilled. We summarize this finding in the following proposition.

Proposition 1. The labor income share always decreases with technological progress in AI if γ ≤ ϕ.

In addition, for a range of realistic parameter values, we can show numerically that the labor

income share tends to decrease with progress in AI, that is, we typically have:

∂LSi,t

∂AG,i,t
< 0. (5)

Furthermore, the ratio of the high-skill labor share to the low-skill labor share can be computed as

LSs,i,t

LSu,i,t
=

ws,i,tLs,i,t/Yi,t

wu,i,tLu,i,t/Yi,t
=

β2 (1 − β3) Lϕ
s,j,t

[
β2Lϕ

s,j,t + (1 − β2)
(
Gj,t AG,j,t

)ϕ
] γ

ϕ−1

β1β3Lθ
u,j,t

[
β1Lθ

u,j,t + (1 − β1)
(

Pj,t AP,j,t
)θ
] γ

θ −1
. (6)

From this expression, the following proposition follows immediately:
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Proposition 2. As long as γ ≤ ϕ, technological progress in AI leads to a relative decrease of the high-skill

labor share to the low-skill labor share.

For the empirical analysis of the two theoretical predictions, we can generalize the formulation

above and write the labor income share as a function of productivity, different types of labor, and

physical capital use (Karabarbounis and Neiman, 2014; O’Mahony et al., 2021) such that

LSi,t = f (Ai,t, ki,t, Lj,i,t), (7)

where Ai,t denotes general productivity, ki,t = Ki,t/Yi,t refers to the capital-output ratio, and Lj,i,t

are different types of labor with skills j. The extent to which changes in productivity as driven

by patenting activity impact upon the regional labor income share is an empirical question that

depends on the substitutability between different types of labor with different types of capital, in-

novative activity, and certain region-specific effects. Below, we derive our empirical specifications

by adapting Eq. (7) to account for the nature of the variables (see Sub-section 4.1) or the treatment

effect that the launch of AI may have had on the regional labor share (see Sub-section 4.2).

4 Empirical model

To explore the relationship between AI innovation and the regional labor share empirically, we use

two panel regression approaches. First, we estimate a long-run reduced-form equation where the

regional labor share is regressed against a proxy for the degree of regional specialization in AI,

reflected by the cumulative number of patent counts developed in this technology domain.Our

dynamic regression procedure is asymptotically robust to reverse causality issues, specifically the

risk that regions with a higher share of income accruing to workers have greater or smaller incen-

tives to develop AI. Nonetheless, in our second approach, we address this issue more specifically

by performing an event analysis that compares the change in the regional labor share after the in-

troduction of AI with the labor share of regions that are not active in this domain. To quantify the

differential performance, we apply the local projections procedure to a difference-in-differences

(LP-DiD) regression framework, in which the year of AI innovation introduction is considered as

the treatment (event).
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4.1 Long-run regression

Our first specification corresponds to the stochastic, log-linear version of Eq. (7):

ln LSi,t = αi,0 + α1 ln ki,t + α2 ln Ai,t + α3 ln Xi,t + CSD + ϵi,t, (8)

where we have data on 273 regions (i = 1, . . . , 273) and 17 years (t = 2000, . . . , 2017). The term αi,0

represents region-specific fixed effects, which account for unchanging regional characteristics, like

the political setting, that may influence even indirectly the labor share, while ϵi,t denotes spherical

errors.

The variable k denotes the capital intensity of production, which, as described above, is typi-

cally expressed in terms of the value of capital relative to output (both in real terms). In line with

the latest developments in national accounting principles, the capital endowment of each region (k)

includes various asset types: tangible (physical) assets (pk), intangible (R&D) capital (ik), and re-

alized knowledge capital (ak). The latter primarily consists of AI patents but also includes patents

related to Fourth Industrial Revolution (4IR) technologies, ICT, and general patents. Since our key

explanatory variable is defined as the stock of knowledge achieved in the new technology field, k

is expressed per unit of labor in this analysis. A denotes the level of regional productivity, alter-

natively defined in terms of Total Factor Productivity (TFP) or Average Labor Productivity (ALP).

The latter is expressed as output per worker or output per hour worked. A reveals whether tech-

nical change is input-specific, namely if it promotes the displacement of labor in favor of greater

usage of new capital inputs. Gross substitutability between factor inputs emerges when a negative

parameter is estimated for k. By contrast, a positive parameter for this explanatory variable would

indicate that capital and labor are gross complements.

Given the potential endogeneity resulting from omitted variables, we account for various con-

founding factors. In this regard, X is a vector of control variables reflecting the structure of the

technology market, the size of the industrial base, and the process of structural change that may be

affecting the economy of a region. These characteristics are approximated by the degree of techno-

logical concentration, the share of the manufacturing sector in total employment, and the rate of

employment change, respectively.

The effect of unobservable factors that generate cross-sectional dependence (CSD) across re-

gions is modeled in different ways. CSD may be caused by co-movements induced by technologi-

cal shocks, globalization, and changes in institutional settings. The effect of CSD is primarily cap-
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tured by common time dummies, which control for temporary variations in patenting incentives

that might arise from fluctuations in product demand, advancements in technology, or short-term

research incentives (such as tax breaks). By using time fixed effects, we assume that common ex-

ogenous shocks have weak effects on the dynamics of the labor share and that these effects are

similar across regions (weak CSD). However, unobservable factors can produce effects on the la-

bor share that are heterogeneous across space; we model these through a set of latent factors that

can be approximated by Common Correlated Effects (CCE), constructed as the unweighted mean

value of the dependent variable and regressors (strong CSD). Finally, as an alternative to the pre-

vious procedure, we model the transmission of shocks across space as inversely related to the

distance between regions (distance-shaped strong CSD). In this case, we use a spatial lag model

with inverse-distance weighting to account for spatial dependence, ensuring that the influence of

shocks diminishes with increasing distance between regions.

We exploit the dynamic properties of regional data and employ an Auto-Regressive Distributed

Lag (ARDL(1,1)) model to estimate Eq. (8). This regression method is known to produce consistent

estimates that are robust to issues such as simultaneity bias and the integration order of variables,

provided that the lag structure of the variables is sufficiently rich (Chudik et al., 2016). In Sub-

sections 6.1-6.2, we present the long-run coefficients derived from these regressions.

4.2 Event analysis

To unveil the causal nature of the linkage between AI and the regional labor share, we also im-

plement an event analysis by reformulating Eq. (8) as a DiD regression. In this specification, the

labor share of regional income (in logs) is regressed against a treatment variable, namely a dummy

variable that is equal to one from the year of AI introduction and zero otherwise. Essentially, we

assume that once a region receives the treatment, it remains treated for the entire observation pe-

riod. This corresponds to a fully absorbing-type treatment, also known as a post-treatment effect

(Athey and Imbens, 2022). Note that in our setup, the timing of treatment varies across regions,

implying that the model is staggered.

The coefficient associated with the post-treatment variable can be interpreted as causal, specif-

ically as the Average Treatment on the Treated (ATT) effect, under the following conditions: (i)

in the absence of the treatment, the labor share of AI and non-AI innovating regions would have

followed parallel trends; and (ii) the introduction of AI innovation (treatment) does not affect the
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labor share before its actual implementation. To meet these conditions, we enrich our DiD spec-

ification with regional fixed effects, common time dummies, and the stock of general patents per

worker (in logs) as control. Moreover, we use a one-year lag of the treatment variable to account

for the delayed response of the labor share to the treatment, and a one-year lead of the treatment

variable to exclude the possibility that the labor share changes in anticipation of the arrival of the

new technology. Finally, to rule out the possibility that regions with a higher (or lower) labor share

select into the treatment group—potentially another important source of endogeneity—we include

the lagged value of the dependent variable among the controls.

We estimate the impact of AI innovation on the labor share by applying the Local Projections

procedure to our DiD framework (see Dube et al., 2023). This involves estimating a set of forward-

effect regressions in which our DiD regression is expressed in first differences, as follows:

ln LSi,t+h − ln LSi,t−1 = δLP
h ∆DAI

i,t +
1

∑
j=−1

θjDAI
i,t+j + φ ln aki,t−1 + TD + ei,t, (9)

where δLP
h denotes the ATT effect at horizon h after the event, ei,t = ϵi,t − ϵi,t−1 is the error term,

while DAI
i,t is our post-treatment dummy and TD denotes common time dummies. We will present

the results as event analysis, plotting the response of the outcome variable h years following the

treatment (δLP
h ) and comparing it to its pre-event trend over h periods, in relation to the change

in the labor share observed for the control group. The latter consists of regions that have never

introduced AI innovation. Hence, the LP-DiD regression is also useful for addressing the issue of

regions without AI, which may be problematic in estimations of a log-log specification as in Eq.

(8). We discuss this issue in more depth later.

In order to obtain consistent estimates for the ATT, we address two other important issues that

could potentially influence our DiD regression. First, we seek to avoid the risk that the changing

composition of the control group over time may bias the estimates; therefore, we adopt the same

(minimum) set of control regions in all forward-effect regressions. We also account for the fact that

regions may have post-treatment periods of different lengths. In this case, the concern is that the

precision of estimates may be affected by regions treated near the end of the sample interval, where

the post-treatment period available to evaluate the effect of AI is relatively short. To mitigate this,

we rescale the ATT proportionally to the length of the post-treatment period (equally-weighted

treatment). In Sub-section 6.3, we present and discuss the results from the LP-DiD regression.
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5 Data and summary statistics

Our analysis is developed using panel data for 273 European regions at NUTS2 level, including the

UK, between 2000 and 2017. We rely on a diverse array of data sources. Our primary economic data

are sourced from Eurostat regional accounts, which provide essential information on employee

compensation, total employment, and gross value added. The labor share of income is expressed as

the ratio of the compensation of employees with respect to regional gross value added, expressed

at current prices. Additionally, we use data on gross fixed capital formation and R&D expenditures

to develop proxies for tangible and intangible capital stocks. The value of these stocks is derived

using the perpetual inventory method from the real value of these fixed investments. The constant

price value of both of these series is obtained by deflating nominal investment with the implicit

deflator for regional value added. For the tangible capital stock we adopt an annual depreciation

rate of 5%, and 15% for the stock of intangible (R&D) assets.

To gain insights into the heterogeneous impact of AI across different groups of workers, we

gather detailed information on the distribution of employment and wages by skill type. The skill

types are defined using the ISCED classification system, which segments educational attainment

into three categories: Low (covering educational levels 0-2), Medium (covering levels 3-4), and

High (covering levels 5-8). Employment by skill type is sourced from Eurostat. Data on the aver-

age wage per worker, categorized by skill type, are derived from EU KLEMS. This dataset provides

information on wage compensation by skill, by industry, and by country, collected from various

European Labor Force Surveys (see Bontadini et al., 2023). We regionalize the average compensa-

tion per employee by exploiting information on the industry share of regional employment and

the distribution of the skill composition of regional employment.

For quantifying realized innovation across various technological domains, including AI, we

utilize patent data sourced from the OECD EPO Regpat database. This database assigns patent

applications at the European Patent Office to NUTS3 level regions using information about the

applicant, through an automatic procedure of name disambiguation. We classify patents by tech-

nology fields using the International Patent Classes (IPC) or Cooperative Patent Classes (CPC)

reported in the patent documents. Specifically, we employ the patent classification provided by

WIPO (2019) to identify AI patents, the classification sourced from EPO (2017) for 4IR patents, and

the Inaba and Squicciarini (2017) J-tag classification system to single out ICT patents. Note that, to

circumvent the problem of including regions with missing values for patents and other investment
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series, all stock variables Z are augmented by one unit and divided by employment L. Afterwards,

we take the logarithm of the transformed variable, which results in the following transformation

ln
(

1+Z
L

)
.

Table 1 presents summary statistics for labor share, innovation, and capital measures across

European regions during the study period. The average total labor share is 51.8, with high-skill,

medium-skill, and low-skill labor shares averaging 12.2, 23.6, and 16.3, respectively. For innova-

tion, the average AI patent stock is 7.4 per 1,000 workers, with a high standard deviation (SD)

of 21.4, indicating significant regional variation. The average 4IR and ICT patent stocks are 112.0

and 145.2 per 1,000 workers, respectively, with SDs of 320.3 and 526.3, highlighting considerable

disparities in the development of these technologies. The total patent stock, excluding AI, 4IR,

and ICT patents, averages 624.4 per 1,000 workers, and 884.5 when excluding only AI patents. Re-

garding capital investments, the tangible capital stock averages 58.3 thousand euros per worker,

while the R&D capital stock averages 2.9 thousand euros per worker (both at constant 2010 prices).

These statistics suggest substantial regional disparities in labor shares, innovation, and capital in-

vestments.

Table 1: Summary statistics

Mean SD 25th pct. 50th pct 75th pct. 99th pct.

Labor share (total; %) 51.8 7.2 46.4 53.7 57.3 63.7

High-skilled LS 12.2 7.0 7.1 10.0 16.9 31.2

Medium-skilled LS 23.6 7.6 19.4 23.6 29.7 37.5

Low-skilled LS 16.3 8.3 10.6 15.5 21.5 41.7

AI patent stock p.w. (# per 1,000) 7.4 21.4 0.0 0.7 5.3 120.0

4IR patent stock p.w. (# per 1,000) 112.0 320.3 1.1 26.1 99.8 1862.7

ICT patent stock p.w. (# per 1,000) 145.2 526.3 1.7 25.5 92.5 2745.0

All patent stock p.w. (excl. AI, 4IR, ICT; # per 1,000) 624.4 1439.5 48.4 363.0 1124.0 8054.6

All patent stock p.w. (excl. AI; # per 1,000) 884.5 34.4 33.5 60.7 82.1 130.1

Tangible capital stock p.w. (thousands of constant euros) 58.3 34.4 33.5 60.7 82.1 130.1

R&D capital stock p.w. (thousands of constant euros) 2.9 3.8 0.1 1.7 4.0 16.5
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Figure 2: Labor share and cumulative change (2000-2017)

Figure 3: AI and ICT technology specialization, RCA (avg. 2000-2017)

Notes: RCA: Revealed Comparative Advantage

To complete the description of the available data, Figures 2 and 3 offer further insights into the

trends and variability in labor shares and patent activities. Specifically, the left panel of Figure 2
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displays the average labor share across European regions, representing the mean value of labor

share over the study period for each region. The right panel of Figure 2 shows the cumulative

change in labor share over time, tracking the total change from the beginning to the end of the

period for each region. Figure 3, on the other hand, depicts the variation in AI patents (left panel)

and the variability in ICT patents (right panel), both defined by the technological Revealed Com-

parative Advantage (RCA) index. Figure 2 shows that the average labor share follows well-defined

country-specific patterns, but the variation over time is substantial, with some regions experienc-

ing an increase in the share of regional income accruing to workers, while others observe a decline,

even within the same nations. Figure 3 also highlights the significant overlap between AI and ICT

specialization in Europe, though the production of AI technologies remains concentrated in a few

areas.

6 Results

6.1 Baseline estimates

Table 2 presents the results for our baseline specification, reporting the long-run coefficients asso-

ciated with the auto-regressive distributed lag model. In column (1), we regress the labor share on

the stock of AI patents per worker, finding an elasticity of -0.014. This result is consistent with evi-

dence from U.S. states provided by Aghion et al. (2019a), where patenting is found to be positively

correlated with various income inequality indicators. Conversely, it conflicts with the positive ef-

fect found for R&D capital, used as a proxy for knowledge generation effort, by O’Mahony et al.

(2021) for industrial economies.

Several possible explanations could account for this result. First, based on the premises of

our theoretical background, this finding may be driven by the technological characteristics of pro-

duction, suggesting that a substitution effect might be at play: as AI technologies advance, new

technological capabilities are created and made available to firms. These capabilities could be used

to automate cognitive tasks, as well as a range of routine manual tasks previously performed by

humans. In this respect, our proxy for AI innovation captures the tendency of firms to produce an

increasingly larger share of output using machines, thereby decreasing reliance on human labor.

Second, productivity gains induced by AI innovation might be a factor driving the dynamics of

the labor share. Earlier firm-level evidence illustrates that AI development can deliver significant
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Table 2: Baseline estimates

(1) (2) (3) (4) (5) (6) (7)

AI patent stock per worker -0.014*** -0.011*** -0.013*** -0.010*** -0.012*** -0.011*** -0.004***

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

ALP - Output per worker 0.016* 0.012 0.008 0.018*

(0.009) (0.009) (0.009) (0.009)

ALP - Output per hour 0.004

(0.009)

TFP -0.289***

(0.005)

Tangible capital stock p.w. 0.002*** 0.002*** 0.003***

(0.000) (0.000) (0.000)

R&D capital stock p.w. -0.001*** 0.001***

(0.000) (0.000)

Adjustment term -0.220*** -0.213*** -0.218*** -0.291*** -0.212*** -0.212*** -0.212***

(0.014) (0.013) (0.014) (0.012) (0.014) (0.014) (0.014)

Scaling factor
Employ-

ment

Employ-

ment

Employ-

ment

Employ-

ment

Employ-

ment

Employ-

ment

Value

added

Obs. 4,576 4,557 3,989 3,913 4,452 4,452 4,452

R-squared 0.384 0.349 0.363 0.197 0.348 0.348 0.348

Regions 278 277 236 236 262 262 262

Notes: The dependent variable is the labor share, defined as the ratio of employees’ compensation to regional gross value added (at current

prices). All variables are measured in logs. Long-run estimates are derived from an ARDL(1,1) regression, which includes region and year fixed

effects. Newey-West standard errors are in parentheses. ***, ** and * significant at 1, 5 and 10%, respectively.
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productivity gains ranging between 10% and 20% (Calvino and Fontanelli, 2023b, Marioni et al.,

2024). When companies introduce AI innovations, they typically enhance their production pro-

cesses by streamlining tasks, optimizing resource use, and achieving greater operational efficiency.

These improvements often result in a more efficient allocation of labor and resources within the

firm, allowing them to produce more output with the same or fewer inputs, including labor. Con-

sequently, the proportion of labor’s contribution to total output could decrease, leading to a lower

regional labor share. Since other productivity-enhancing factors may contribute to the impact at-

tributed to AI, we explicitly include labor and total factor productivity levels among the regressors

below.

A third explanation involves skill complementarity. While AI technologies may displace some

types of labor, they can also enhance the skills of workers in other areas. AI innovation results from

extensive research and the efforts of skilled professionals who identify, develop, and apply new

technologies within their organizations. In regions with a high stock of AI patents, labor demand

may shift towards more specialized or higher-skilled roles, reducing the overall labor share in

the regional economy as demand for less specialized roles declines. Finally, the observed inverse

relationship between AI and the labor share might reflect the broader effects of structural change

and the tertiarisation of the economy. Regions specializing in developing AI technologies could

be undergoing transformations in their industrial composition or economic structure, potentially

leading to a reduction in the prominence of labor-intensive sectors or a shift in production towards

regions with more intensive capital inputs.

The negative association between the labor share and AI innovation remains robust even after

controlling for various factors. In columns (2) through (4), we account for measures of regional

productivity. The analysis reveals that the labor share is only marginally positively related to

output per worker, has an insignificant relationship with output per hour, and is negatively related

to TFP with an elasticity of -0.289.2 These productivity measures appear to mitigate the negative

impact of AI innovation on the labor share.

In columns (5) and (6), we introduce controls for tangible capital and R&D capital, both mea-

2One issue with using the TFP index as an empirical proxy for productivity is that it is typically derived as a Solow

residual or from a Cobb-Douglas production function. These methods assume constant input substitutability, whereas

our conceptualization is based on flexible substitution or complementarity between production factors, as described

by the CES production technology. On this basis, output per worker remains our preferred measure of productivity in

the following part of the analysis.
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sured on a per-worker basis. The coefficient for tangible capital is positive (0.002), indicating a

small but favorable effect on the labor share. This suggests that investments in tangible capital,

such as machinery and equipment, complement labor. Conversely, the coefficient for R&D capital

is negative (-0.001), reflecting a decrease in the labor share. R&D spending may foster technologi-

cal advancements that either replace workers engaged in routinized manual jobs or cognitive tasks

with machines, or lead to productivity gains that may not be fully captured by our controls. Ad-

ditionally, R&D may generate rents that do not proportionally benefit labor. Consequently, while

R&D capital fosters innovation and efficiency, these advancements may reduce the relative impor-

tance of labor in both the production process and the distribution of income. However, these re-

sults change in column (7), where we replicate the regression analysis from column (6), but scale all

variables by value added rather than by employment. The finding that the labor share is negatively

related to the cumulative value of R&D per worker, but positively related to research expenses ex-

pressed as a ratio to value added, may be due to the fact that R&D workers command relatively

high wages. Their income grows proportionally faster than that of other factors, including capital

inputs (Igna and Venturini, 2019). This is consistent with the trend of increasing cost-effectiveness

and declining productivity in R&D (Bloom et al., 2020; Mason et al., 2020).3 Note that while the

main results in column (6) remain consistent with our earlier estimates, we observe that the effect

of AI innovation on the labor share diminishes.

6.2 Role of confounders

In Table 3, we expand the analysis by accounting for a larger set of factors that may influence

income distribution across inputs at the regional level. We consider two main groups of coun-

founders: the first group includes proxies for alternative sources of technological (realized) knowl-

edge (columns (2)-(4)), while the second group captures broader (structural) characteristics of the

regions that could nonetheless affect the dynamics of the labor share (columns (5)-(7)).

In column (1), we report the results of our benchmark regression, as illustrated earlier (i.e.,

column (6) in Table 2). In column (2), we focus on 4IR patents, which encompass technologies

such as flexible automation, additive manufacturing, big data, and the Internet of Things (IoT),

3Using historical data for OECD countries, Madsen et al. (2024a) document that the declining productivity (or,

equivalently, the increasing cost-effectiveness) of R&D may account for approximately 30% of the reduction in income

inequality (including the capital-to-labor income ratio) since 1920.
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but exclude AI. This broader category of emerging digital technologies is rapidly expanding and

has increasingly wider applications, thanks to the integration of AI within these systems. Overall,

4IR technologies are found to have a modest economic impact on aggregate productivity, though

these effects are statistically significant (Venturini, 2022) and observable even at the regional level

(Capello and Lenzi, 2024). However, certain technologies within this group, such as the IoT, can

have a quantitatively substantial impact on productivity (Edquist et al., 2021). While the integration

of next-generation digital technologies poses challenges in identifying the impact of individual

innovations, there is also the risk that the effect of AI on the labor share could be understated. The

results in column (2) suggest that the effect estimated for AI does not capture the influence of a

broader set of technologies. In fact, 4IR technologies are found to have a positive and significant

effect on the labor share, in contrast to the effect observed for AI.

Column (3) focuses on ICT patents, which include innovations in computing, telecommunica-

tions, and related fields. These are considered antecedent technologies of AI, paving the way for

the development of the new generation of digital technologies (Igna and Venturini, 2023). Ear-

lier evidence highlights that the most prolific firms previously innovating in ICT, as well as those

employing a higher share of ICT specialists, tend to move earlier into new technology domains

(Calvino and Fontanelli, 2023a, 2023b). In column (4), we consider the aggregate of patents devel-

oped outside the technology field of AI. This variable should therefore capture the effect of general

knowledge created in the region.

Regressions using this first group of controls in columns (2)–(4) notably illustrate that all forms

of realized knowledge, except AI, are positively associated with the labor share. This finding sug-

gests that innovation processes that successfully lead to the development of new knowledge are

likely to create rents that are (partly) appropriated by workers, as technological knowledge com-

plements labor on aggregate (Aghion et al., 2019b). This effect goes beyond the impact on re-

searchers’ wages, as their compensation is already accounted for in the R&D expenditures, which

are included among the control variables (not shown in the table). Two additional points are

worth noting. First, the positive effect found for both old and new generations of digital tech-

nologies (namely, ICT and 4IR) differs from the standard mechanism of capital deepening, which,

according to prior studies, tends to be detrimental to the dynamics of the labor share of income

(Karabarbounis and Neiman, 2014; O’Mahony et al., 2021). Second, there is a scale effect associated

with realized knowledge, as the coefficient for this control variable increases in magnitude with
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the broader base of patents considered (from 0.002 for 4IR to 0.047 for total patents). Overall, these

findings support the view that realized innovation increases the labor income share and reduces

factor income inequality, although the development of AI may have its own unique impact.

Table 3: Alternative sources of realized knowledge and structural characteristics

(1) (2) (3) (4) (5) (6) (7)

AI patent stock p.w. -0.011*** -0.012*** -0.015*** -0.016*** -0.016*** -0.011*** -0.016***

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

4IR patent stock p.w. 0.002**

(0.001)

ICT patent stock p.w. 0.009***

(0.001)

All patent stock p.w. (excl. AI) 0.047*** 0.047*** -0.029*** 0.049***

(0.004) (0.004) (0.004) (0.004)

Tech concentration -0.011***

(0.001)

Manuf. employment share 0.154***

(0.006)

Employment change 0.114***

(0.032)

Adjustment term -0.212*** -0.213*** -0.214*** -0.214*** -0.211*** -0.216*** -0.233***

(0.014) (0.014) (0.014) (0.014) (0.017) (0.013) (0.016)

Controls Yes Yes Yes Yes Yes Yes Yes

Obs. 4,452 4,452 4,452 4,452 3,445 4,452 4,190

R-squared 0.348 0.348 0.347 0.347 0.346 0.344 0.372

Regions 262 262 262 262 204 262 262

Notes: The dependent variable is the labor share, defined as the ratio of employees’ compensation to regional gross value added (at current

prices). All variables are measured in logs. Long-run estimates are derived from an ARDL(1,1) regression, which includes region and year fixed

effects. Newey-West standard errors are in parentheses. ***, ** and * significant at 1, 5 and 10%, respectively.

Controls: Tangible capital stock per worker; R&D capital stock per worker; Output per worker.

In columns (5) to (7), we account for the second group of control variables that reflect the struc-

tural characteristics of economies and may impact the labor share. The negative coefficient for

technological concentration (column (5)) suggests that as the overall technology market becomes

more concentrated, the proportion of economic output allocated to labor decreases. This occurs
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because firms can translate their market power more into capital than labor income, likely appro-

priating a larger portion of rents from innovations protected by patents.Another possibility is that

in regions where the technology market is concentrated, the entry rate of new companies is lower,

leading to higher profits for incumbents and an increasing relative portion of income accruing to

entrepreneurs and capital owners. This reflects a weakening of the typical Schumpeterian mech-

anism of creative destruction. These effects may be even more pronounced when the technology

market is dominated by capital-intensive firms, which is a common scenario in digital markets and

those controlled by big tech companies (Autor et al., 2020). We will further investigate this issue

later. Conversely, the positive coefficient for the manufacturing employment share (column (6))

may reflect the relatively strong bargaining power of labor unions. In this sector, workers usually

secure better wage and employment conditions, thereby appropriating a larger proportion of in-

come (Askenazy et al., 2018; Cordoba et al., 2024). Finally, in column (7), we account for the effect

of structural change by considering changes in employment levels. The positive coefficient for this

explanatory variable suggests that in regions with a greater incidence of expanding sectors, the

labor share in the economy increases. This reflects higher labor demand and potentially greater

wages due to the shortage of available labor.

We also account for life expectancy and fertility in our analysis (results not reported). Our

findings show positive coefficients for both variables. Specifically, the positive coefficient for life

expectancy suggests that healthier individuals may invest more in education, be more productive

in the workplace, and, given their longer lifespan, contribute more to the economy (Bloom et al.,

2024a). Similarly, the positive coefficient for fertility may reflect the impact of a larger proportion

of younger individuals entering the workforce. If wages are downward rigid, an increase in the

number of young workers can expand the labor share. Both positive coefficients for life expectancy

and fertility align with previous findings on the demographic determinants of the labor income

share (Schmidt and Vosen, 2013).

In Table A1 of the Appendix, we control for characteristics related to the institutional setting

of the region, with data available only for the second decade of the sample interval.4 Specifi-

cally, we control for the quality of government services, the degree of business dynamism, and the

endowment of both physical and digital infrastructure. These dimensions reflect the ability and

4Using data from 2010 onward helps neutralize the potential bias caused by the financial crisis, as illustrated in

Figure 1. However, a drawback is that this data is available only for a subset of regions, making the results in Table

A1 not fully comparable with those presented earlier in this section.
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willingness of regional governments to create conditions conducive to the social and economic

well-being of residents and businesses. The quality of government is assessed based on regional

public services, which recent studies have found to be positively associated with regional devel-

opment (Rodrı́guez-Pose, 2020). Business dynamism is measured by the proportion of new firms

relative to total active companies. In the Schumpeterian tradition, new entrants drive competition

and the process of creative destruction, which can erode incumbents’ rents (i.e., profits and capital

ownership). However, if increased competition reduces incentives to innovate by making rents

short-lived or compressing mark-ups and profits, a higher entry rate may be associated with lower

income inequality, reflected in a higher labor share in our analysis (Aghion et al., 2005; Blundell

et al., 2022). The endowment of physical infrastructure is measured by the number of kilometers of

motorways per square kilometer, while digital infrastructure is assessed based on the broadband

coverage of the population (i.e., the percentage of households with fast internet access). Generally,

public infrastructure facilitates access to productive opportunities, increasing the relative returns

to assets and education (Calderon and Serven, 2014). However, the impact may differ in the short

and long run depending on how these policies are financed (Chatterjee and Turnovsky, 2012).

Digital infrastructure is generally less costly to fund than physical infrastructure, but its effect on

the labor share may depend on its influence on regional specialization, potentially widening the

digital divide across areas and affecting the demand for skilled labor and returns to education

(Houngbonon and Liang, 2021 for a study on France).

In summary, the results in Table A1 illustrate that the adverse effects of AI on the labor share

are stronger in the most recent years. These effects do not overshadow the impact of other drivers

of factor income distribution, such as business dynamism and physical infrastructure, which are

found in this paper to drive the dynamics of the labor share across European regions.

6.3 Causality, other econometric issues, and quantification of the effects

In this section, we first investigate in depth whether the nexus between AI and the labor share

is causal through an event analysis. Then, we discuss various other econometric issues that may

affect our estimates. Finally, we quantify the variation in regional labor shares explained by the

results obtained in the first part of the analysis.

Our main dynamic regression procedure yields consistent estimates when the lag structure of

the variables is optimally chosen. In this section, we use an alternative identification procedure
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and examine the response of the labor share to the launch of AI innovation using the LP-DiD

regression. Figure 4 presents the outcomes of this event analysis procedure, specifically reporting

the change in the log-value of the labor share within a horizon of six years after the introduction of

AI, which we consider the event. The estimated parameter corresponds to an elasticity and is fully

comparable with the coefficients of the dynamic regression shown in Table 2. The figure shows a

reduction in the labor share two years after the event. The decrease amounts to 0.7% in response to

a unit increase in the explanatory variable and is significant at the 5% level. The magnitude of this

impact remains stable for half a decade, but, as is standard with these procedures, the precision

of estimates diminishes over time (Jordà and Taylor, forthcoming). By the end of the period, the

effect of AI falls outside the 95% significance region. The effect estimated for AI using the LP-

DiD regression is at the lower bound of the range of elasticities found with the dynamic (ARDL)

regression.

In Table A2 of the Appendix, we assess the robustness of our main estimates to various econo-

metric issues. First, we run the dynamic regression using a richer lag structure for the model

variables to ensure the consistency of estimates. Specifically, we estimate the baseline specifica-

tion with more than one lag (ranging from two to five) for both the dependent variable and the

regressors, obtaining similar results. Second, we evaluate how our estimates are affected by the

log-transformation of patent stocks, ln(1 + Z), which we use to include all European regions in

the regression sample. To address this, we run our log-log model restricting the sample to regions

with at least one patent over the full sample period. Moreover, to investigate whether the effect of

AI varies with the technological capability of the region, we run separate regressions considering

regions that, in order, lie at the 25th, 50th, and 75th percentiles of the distribution of AI innovation.

This involves including regions with 1, 5.8, and 19 patent counts, respectively. In all cases, the

results of our baseline regression are broadly confirmed. In the last robustness check for sample

composition issues, we run the baseline specification using the inverse hyperbolic sine transfor-

mation for the variables (instead of logarithms). Again, we obtain findings that are consistent with

the baseline regression.

One key feature of economic processes that spread through space is the dependence they create

among geographically contiguous units. These factors may not be fully observable and, therefore,

may not be entirely accounted for, generating co-movements across regions that can be misinter-

preted as the effect of specific characteristics of the area. In other cases, cross-sectional dependence
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Figure 4: Effect of the introduction of AI: Event analysis (LP-DiD regression)

Notes: Event-analysis estimates for the effect of AI innovation on the log level of the labor share are obtained using the LP-DiD regression method.

This method employs one-year leads and lags of the treatment variable, as well as the one-year lag of the total stock of patents (excluding AI) per

worker and the labor share (in logs). The control group consists of ’never treated’ regions. Standard errors are clustered at the regional level, and

bandwidths are set to achieve 95% confidence.

is driven by purely idiosyncratic shocks, whose geographical propagation undermines estimation

efficiency. In our analysis, we primarily assume that contemporaneous co-movements across re-

gions are driven by unobservable factors that generate weak levels of cross-sectional dependence,

with effects that are homogeneous across space and can be accounted for using time dummies.

However, if the impact of such common shocks is strong and affects regional performance asym-

metrically, it is preferable to use common correlated effects (CCE). These can be computed as sim-

ple averages of the variables used in the empirical model or, more structurally, as the mean of

these variables weighted inversely by the distance between pairs of regions. As Pesaran (2006)

points out, one advantage of the former method is that it does not require assumptions or tests

regarding the channel of shock propagation (e.g., geographical or technological distance, bilateral
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trade, worker mobility, etc.). However, measures of spatial dependence based on proximity met-

rics remain highly informative about which mechanisms may be at play (see Coe and Helpman,

1995, Bottazzi and Peri, 2003, and related works in this journal). In Table A3 of the Appendix, we

examine the role of spatial dependence in our setting, finding evidence that neighboring regions

influence each other’s economic outcomes. Specifically, there is a negative association between fac-

tor income distribution among adjacent areas, with the labor share in one region being higher when

that of neighboring regions is lower, while innovations in nearby regions are positively associated

with the local labor share. However, the spatial lag effect of AI patents becomes insignificant when

CCE terms are included in the analysis. This suggests that the impact of neighboring regions’

patenting activities may be an artifact of the weighting scheme used and, in practice, that these

types of spillovers are very difficult to identify (Eberhardt et al., 2013). The negative association of

labor shares between contiguous areas may reflect labor mobility: regions with relatively higher

wages or more job opportunities can attract workers from adjacent areas, with this effect typically

being stronger for more educated workers who earn more (Langella and Manning, 2022).

Table 4: Quantification of effects

Mean 25 pct. 50 pct 75 pct 99 pct

Lower bound LP-DiD -0.20% -0.17% -0.20% -0.22% -0.25%

Upper bound ARDL -0.46% -0.41% -0.48% -0.51% -0.58%

Notes: Lower bound values use parameter estimates from the LP-DiD regression (-0.007). Upper bound values use parameter estimates from the

ARDL regression in column 4, Table 3 (-0.016).

Estimates from this part of the analysis reveal a noticeable sensitivity of the labor share to AI

innovation. In percentage terms, doubling AI would decrease the proportion of regional income

accruing to workers by 0.7% using the event-analysis estimates as a lower bound (-0.007; Figure 4),

and by 1.6% using the dynamic estimates as an upper bound (-0.016; Table 3). We can also quantify

variation in the labor share explained by our estimates in percentage (absolute) points. This can

be derived by multiplying the estimated elasticities with the absolute change in the stock of AI per

worker between 2000 and 2017 (0.3%), and expressing the resulting figure as ratio to the mean of

the labor share over the sample period (51.8%). Using our lower bound estimates (-0.007), due to

the effect of AI innovation the labor share would have fallen by 0.20% (from its mean of 51.8%),

and by 0.46% using our upper bound estimates (-0.016). Put differently, our results suggest that
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AI innovation may account for up to one-half percentage point of the labor share decline observed

since the early 2000s. These figures are not overly high and, thus, appear plausible. Table 4 also

illustrates that the percentage reduction in the labor share is fairly uniform across the distribution

of the variable, whether for capital-intensive regions (above the 25th percentile) or labor-intensive

regions (above the 75th percentile).

6.4 Impact of AI innovation by skill type and underlying mechanisms (2010-

2017)

We now investigate the effect of AI during the period following the Great Recession of 2008-09,

where we can disentangle the labor share by skill type (educational level). We then explore the

mechanisms that may be driving the overall effect of AI.

We present the results of our main specification by skill level on the left-hand side of Table 5. On

the right-hand side, we report the findings of a similar specification using the employment share

as the dependent variable, and the same set of covariates as explanatory variables. The goal is to

examine whether the effect of AI on the labor income share can be explained by the heterogeneous

impact of this innovation type on job opportunities for different categories of workers, as proxied

by their share in total regional employment. A substantial difference between the effect of AI on

the labor income share and the employment share would indicate that one mechanism through

which AI operates is by altering relative factor compensation. From an accounting perspective,

relative factor compensation drives variation in labor income share, alongside changes in relative

employment (Azmat et al., 2012). A full displacement effect on the labor share emerges when the

new technology negatively impacts both the employment and wage shares. A full productivity

effect emerges when AI is positively related to both employment and wage shares. In the former

case, the elasticity of AI in the labor share specification would be negatively signed, and in the

latter case, it would be positively signed. Whenever AI has opposing effects on wage and employ-

ment shares, the net effect on the labor share depends on which of these two forces prevails. This

phenomenon is known as the reinstatement effect of the new technology (Albanesi et al., 2023).

Note that, for this group of regressions, the table also presents the coefficients of all control vari-

ables to illustrate the differences in their effects and, overall, to corroborate the robustness of these

estimates.

The results in Table 6 suggest that AI is detrimental to the income share of each worker cate-
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gory, but this effect is larger for high-skill workers and smaller for low-skill workers. This finding

supports the prediction of our theoretical framework that AI shifts income distribution away from

workers at the top end of the skill distribution toward those at the bottom. Interestingly, estimates

on employment shares point to large heterogeneity in the transmission mechanism of AI’s effects.

These innovations are unrelated to the employment shares of high- and medium-skill workers

but are positively associated with the employment share of low-skill workers. These two sets of

estimates suggest that the decline in the labor share of medium- and high-skill workers is mainly

driven by wage compression, potentially due to a reduced ability to capture the benefits of innova-

tion rents, as their job opportunities remain unaffected by AI. Conversely, relative to other worker

groups, employment opportunities for low-skill workers increase as a result of AI, which mitigates

the gross negative effect of wage compression. For low-skill workers, however, the reinstatement

effect of new digital technology remains negative.

Among the control variables, labor productivity is found to be negatively associated with the

shares of labor income and employment for workers on the right-hand side of the skill distribu-

tion (the low-skilled). Tangible assets, such as machinery, equipment, and structures, complement

low-skill labor—a finding observed in both relative measures of income and employment—while

the reverse holds for the other two groups of employees. In contrast, knowledge capital acts as a

complementary input for high-skill workers and a substitute input for low-skill workers, regard-

less of whether it is measured in terms of innovation output (total patents) or innovation input

(R&D). The heterogeneity in the effects of the control variables aligns with the main findings of

earlier literature, lending strong support to the robustness of our regressions by skill group (vom

Lehn, 2018; O’Mahony et al., 2021).

One may question whether the statistical association between AI innovation and regional labor

share is due to technological substitutability across factor inputs, as outlined by our theoretical

framework, or if it is instead the outcome of some other unaccounted mechanism. An alterna-

tive force that could be at play is the increasing concentration of AI. These new technologies are

produced by a few large firms, which were previously successful in the ICT field, and drive the

technological specialization of the regions where they are located (see Figure 1). This trend is com-

mon to both the manufacturing and service sectors, where a larger market share is held by a few

big tech companies (WIPO, 2019; Baruffaldi et al., 2020).

In the final part of the work, we investigate this issue by replicating the regressions by skill,
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Table 5: The impact of AI innovation the shares of labor and employment by skill (2010-2017)

(1) (2) (3) (4) (5) (6) (7) (8)

Labor share Employment share

Total
High

skill

Medium

skill

Low

skill

High

skill

Medium

skill

Low

skill

AI patent stock p.w. -0.016*** -0.025*** -0.033*** -0.034*** -0.020*** -0.005 0.002 0.012**

(0.001) (0.002) (0.008) (0.003) (0.007) (0.005) (0.003) (0.006)

ALP - Output per worker 0.000 -0.440*** 0.031 0.024 -0.347*** 0.037 -0.023 -0.260***

(0.009) (0.059) (0.075) (0.032) (0.071) (0.033) (0.019) (0.051)

Tangible capital stock p.w. 0.000 0.128*** -0.316*** -0.125*** 0.244*** -0.297*** -0.168*** 0.325***

(0.000) (0.015) (0.036) (0.015) (0.033) (0.018) (0.012) (0.025)

R&D capital stock p.w. -0.002*** -0.003*** 0.038*** 0.006*** 0.011*** 0.022*** 0.007*** -0.008***

(0.000) (0.001) (0.004) (0.001) (0.003) (0.003) (0.001) (0.002)

All patent stock p.w. (excl. AI) 0.047*** 0.011 1.652*** -0.033 -1.141*** 1.355*** -0.205*** -0.844***

(0.004) (0.019) (0.091) (0.026) (0.085) (0.057) (0.028) (0.060)

Adjustment term 0.786*** 0.608*** -0.278*** -0.269*** -0.374*** -0.223*** -0.411*** -0.357***

(0.014) (0.049) (0.022) (0.021) (0.025) (0.020) (0.037) (0.020)

Period 2000-17 2010-17 2010-17 2010-17 2010-17 2010-17 2010-17 2010-17

Obs 4,452 2,080 1,944 1,944 1,944 1,944 1,944 1,944

R-squared 0.347 0.520 0.447 0.401 0.528 0.303 0.551 0.474

Regions 262 260 243 243 243 243 243 243

Notes: The dependent variable is the labor share, expressed as the ratio of employees’ compensation to regional gross value added (at current

prices) in columns (1)-(5) and the share of employment by skill type on total employment in columns (6)-(7). All variables are in logs. Long-run

estimates are obtained from an ARDL(1,0) regression. Region and year fixed effects are included in the regression. Newey-West standard

errors.***, ** and * significant at 1, 5 and 10%, respectively.

including two concentration measures of AI innovation. The first indicator is the four-firm concen-

tration ratio (CR4) of AI patents within each region. This variable is used to understand whether

the success and growth of larger (superstar) firms may have an aggregate effect on the labor share

of regional income, particularly if these companies are relatively less labor-intensive (Autor et al.,

2020). This represents the within-region effect of AI concentration. The second indicator corresponds

to the share of each region in total AI patents developed in Europe. This variable is used to cap-
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ture the increasing specialization of certain areas and the fact that these may become more (or less)

attractive to workers from adjacent regions, depending on their skills and the new labor demand

(Bonfiglioli et al., 2023). This represents the between-region effect of AI concentration.

Table 6 unambiguously indicates that, for high- and medium-skill workers, the effect of AI is

mainly driven by substitutability (complementarity) with other production inputs, rather than

by changes in labor demand fueled by AI concentration. For low-skill workers, the effect of

AI on labor share—whether through the channel of factor substitutability or market concentra-

tion—remains ambiguous, as both variables are insignificant in column (6). This finding highlights

the weak income effects of AI at the bottom end of the skill distribution. Finally, it should be noted

that AI concentration is detrimental only to the labor share of medium-skilled workers, primarily

through the between-region channel, thus emerging as a force that strongly polarizes factor income

distribution (Michaels et al., 2014).5

Table 6: The impact of AI concentration on the labor share by skill (2010-2017)

(1) (2) (3) (4) (5) (6)

High skill Medium skill Low skill

AI patent stock p.w. -0.033*** -0.044*** -0.034*** -0.037*** -0.020*** -0.011

(0.008) (0.008) (0.003) (0.003) (0.007) (0.007)

AI concentration (within-region) -0.004 -0.006** -0.009

(0.009) (0.003) (0.009)

AI concentration (between-region) -0.694 -0.699*** 0.097

(0.434) (0.199) (0.365)

Obs. 1,944 1,944 1,944 1,944 1,944 1,944

R-squared 0.447 0.449 0.401 0.403 0.528 0.531

Regions 243 243 243 243 243 243

Notes: The dependent variable is the labor share, expressed as the ratio of employees’ compensation to regional gross value added (at current

prices). All variables are in logs. Long-run estimates are obtained from an ARDL(1,0) regression. Region and year fixed effects are included in the

regression. Newey-West standard errors.***, ** and * significant at 1, 5 and 10%, respectively. Controls: R&D capital stock per worker; Non-AI

patent stock per worker.

5These findings are confirmed even when we control for the within- and between-effects of ICT innovation concen-

tration (not shown for the sake of brevity).
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7 Conclusions

In this paper, we have investigated the complex relationship between technological innovation, re-

gional economic development, and labor market outcomes, specifically examining how advances

in AI impact income inequality and factor returns. We have focused on the labor income share

across European regions since 2000, using a theoretical framework and empirical analyses to ex-

plore how AI innovation has influenced regional disparities in labor shares.

Our findings indicate that AI innovation is linked to a significant decline in the labor share,

potentially accounting for between one-fifth and one-half of a percentage point of the overall de-

crease observed since the early 2000s. This highlights the noticeable impact of AI on exacerbating

income inequality, especially in regions that specialize in AI-related technologies, underscoring

AI’s role in driving regional disparities in labor income distribution.

We also document that the effects of AI innovation are heterogeneous across different skill lev-

els. High- and medium-skill workers face adverse outcomes in both wages and employment, as

AI development is negatively correlated with their income and employment shares. For low-skill

workers, the adverse impact is more concentrated on income, while employment prospects im-

prove as a result of AI innovation. Our analysis suggests that these differential impacts are driven

by the varying degrees to which AI technologies substitute or complement tasks performed by

workers of different skill levels. High- and medium-skill workers, who implement cognitive and

repetitive decision-making tasks, experience greater negative effects, whereas low-skill workers

may benefit from shifts in labor demand towards roles that are less automatable or complemen-

tary to AI technologies.

Future research could further investigate how the interaction between technological advance-

ments and contextual factors, such as policy interventions, labor market dynamics, and educa-

tional systems, shapes regional income inequality. Assessing the effectiveness of various policy

measures, including social protections and labor regulations, in addressing the distributional im-

pacts of AI will be essential for mitigating potential negative outcomes. Moreover, expanding the

analysis to include metrics beyond the labor share, such as wage inequality and access to high-skill

jobs, would provide a more comprehensive understanding of the multifaceted nature of inequality

driven by AI advancements. Incorporating these broader dimensions would enable future studies

to better capture the complex ways in which AI influences different segments of the workforce and

contributes to regional disparities.
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Böckerman, P. and Maliranta, M. (2012). ‘Globalization, Creative Destruction, and Labour Share

Change: Evidence on the Determinants and Mechanisms from Longitudinal Plant-Level Data’,

Oxford Economic Papers, vol. 64(2), pp. 259–280.
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Appendix A

Table A1: Role of the institutional setting (2010-2017)

(1) (2) (3) (4) (5) (6)

AI patent stock p.w. -0.016*** -0.025*** -0.035*** -0.023*** -0.024*** -0.026***

(0.001) (0.002) (0.003) (0.003) (0.003) (0.003)

Regional characteristic 0.001 -1.201*** 0.042*** 0.055

(0.006) (0.077) (0.007) (0.041)

Govern-

ment

quality

Business

dy-

namism

Physical

infras-

tructure

Digital

infras-

tructure

Controls Yes Yes Yes Yes Yes Yes

Period 2000-17 2010-17 2010-17 2010-17 2010-17 2010-17

Obs 4,452 2,080 864 752 1,088 1,024

R-squared 0.347 0.520 0.533 0.512 0.572 0.565

Regions 262 260 108 94 136 128

Notes: The dependent variable is the labor share, expressed as the ratio of employees’ compensation to regional gross value added (at current

prices). All variables are in logs. Long-run estimates using data from 2000 are obtained from an ARDL(1,1), those using data from 2010 are

obtained from an ARDL(1,0). Region and year fixed effects are included in the regression. Newey-West standard errors.

Controls: Output per worker; Tangible capital stock per worker (column (1) only); R&D capital stock per worker; Total patent stock (excluding AI)

per worker.
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Table A3: Spatial dependence

(1) (2) (3) (4) (5) (6) (7)

AI patent stock p.w. -0.016*** -0.016*** -0.016*** -0.017*** -0.011*** -0.006*** -0.012***

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.003)

Labor share (spatial lag) -0.049*** -0.083*** -0.080*** -0.080*** -0.076**

(0.010) (0.011) (0.011) (0.012) (0.034)

AI patent stock p.w. (spatial lag) 0.003** 0.009*** 0.007*** 0.008*** 0.001

(0.001) (0.002) (0.002) (0.002) (0.004)

Adjustment term -0.214*** -0.214*** -0.214*** -0.213*** -0.216*** -0.230*** -0.761***

(0.014) (0.014) (0.014) (0.014) (0.014) (0.014) (0.043)

Cross-Sectional Dependence TD TD TD TD NO NO CCE

Controls Yes Yes Yes Yes Yes No No

Obs. 4,452 4,452 4,452 4,420 4,420 4,471 4,208

R-squared 0.347 0.347 0.347 0.347 0.342 0.400 0.937

Regions 262 262 262 260 260 263 263

Notes: The dependent variable is the labor share, defined as the ratio of employees’ compensation to regional gross value added (at current

prices). All variables are measured in logs. Long-run estimates are derived from an ARDL(1,1) regression, which includes region and year fixed

effects. Newey-West standard errors are in parentheses. ***, ** and * significant at 1, 5 and 10%, respectively.

Controls: Output per worker; Tangible capital stock per worker; R&D capital stock per worker; All patent stock per worker (excluding AI).
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