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1 Introduction

Two of the most important characteristics in production of many public services (and goods) are

their nonrivalrous nature and the fact that producer of public services attempts to maximize

public welfare, not private profit. If public services are provided on municipal level, a town

can maximize utility of its inhabitants only if it takes into consideration set of public services

provided by neighbouring municipalities. Consider the following example: Why should town A

invest in public swimming pool if a pool is already available in neighbouring town B? Wouldn’t

it be more efficient to invest in a local high school? Children commuting from B to A would

benefit as well.

However, even though ’looking over the border’ is necessary for welfare maximisation, it is not

sufficient. Isn’t it possible that lack of cooperation between municipalities will lead to sub-

optimal decisions despite the best efforts of each decision making unit to improve welfare of

its inhabitants, especially if number of municipalities is high1? In this article we conceptual-

ize this question and provide simple analytical approach enabling to think about problem of

specialisation and diversification in public services provision on local level.

We show that if costs of transferring public services between two municipalities are at intermedi-

ate level (their are non-negligible, but they are not prohibitive), it is possible that municipalities

will end up in Pareto-suboptimal equilibrium. In this case, cooperation or merging of municipal-

ities will lead to superior allocation of resources. Note that merging of municipalities is exactly

what has been recommended to Slovakia and other countries in the region from various sources,

for example in Swianiewicz (2010); Nemec and de Vries (2015) or Cernenko et al. (2017).

To the best of our knowledge, problem of specialisation and diversification in production of

public services was not addressed in the literature using game-theoretic approach. In this way,

we contribute to the literature.

2 The Model

2.1 Technology and preferences

Assume municipalities A and B producing public services X and Y . Municipality i chooses

non-negative quality of service Xi and Yi (i.e. respecting Xi ∈ [0, 1] and Yi ∈ [0, 1]) under the

fixed budget constraint

1The administrative structure in Slovakia is one of the most fragmented in Europe, the number of mayors per
100,000 inhabitants ranks 3rd among European countries right behind Czech Republic and France, see Cernenko
et al. (2017)
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Xi + Yi = 1, (1)

where i ∈ {A,B}2. Choosing Xi = 0 (or Yi = 0) is equivalent to not producing X (or Y ) at all.

Consumers choose whether to use service provided in their home municipality or whether to

commute to the neighbouring town. Assume that consumers in municipality i are indifferent

between consuming services provided in home town i and commuting to neighbour town i′ if

Si = aSi′ , S ∈ {X,Y }. Parameter 0 < a < 1 describes degree of transferability of public

services between two towns, 1 − a can be interpreted as transport costs. If Si > aSi′ citizens

consume S in their home town i, if Si < aSi′ citizens commute into i′.

Both services X and Y are non-rival, i.e. quality (and quantity) of services available to citizens

in municipailty i do not change if citizens from neighbour town i′ choose to commute and

consume services in i.

Assuming separable logarithmic utility function, utility of citizens in municipality i is given by:

Ui = log [max (Xi, aXi′)] + log [max (Yi, aYi′)] , (2)

Municipality i maximizes (2) with respect to (1) taking actions of other town i′ as given.

Using (1), utility of citizens in municipality i (2) can be rewritten as a function of quality of

service X provided in towns i and i′:

Ui(Xi, Xi′) =


log aXi′ + log (1−Xi) , Xi ∈ [0, aXi′ ]

logXi + log (1−Xi) , Xi ∈ [aXi′ , 1− a + aXi′ ]

logXi + log [a (1−Xi′)] , Xi ∈ [1− a + aXi′ , 1]

(3)

Figure 1 plots utility Ui against Xi for different values of a assuming Xi′ = 0.4.

Observe that the utility function is decreasing in Xi on the left interval Xi ∈ [0, aXi′ ] and

increasing in Xi on the right interval Xi ∈ [1− a + aXi′ , 1]. On the middle interval Xi ∈
[aXi′ , 1− a + aXi′ ] the utility function is increasing if Xi < 0.5 and decreasing if Xi > 0.5. In

other words, assuming that 0.5 falls into the interval [aXi′ , 1− a + aXi′ ], on this interval utility

function has an inverse U-shape given by logXi + log (1−Xi), as depicted in Figure 1.

2More generally, budget constraint should be expressed as Xi + Yi ≤ 1. However, it is easy to see that
municipality can always increase utility of citizens by increasing quality of services X or Y . Budget constraint is
therefore always binding.
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Figure 1: Utility function Ui(Xi, 0.4) for different a’s

2.2 Unilateral utility maximizing and policy mapping

The most important feature of the utility function is that there are either two or three

local maxima depending on values of a and Xi′ . Those are at (i) Xi = 0, (ii) Xi = 1 and if

aXi′ < 0.5 < 1− a− aXi′ there is the third local maximum at (iii) Xi = 0.5.

Global maximum is obtained by comparing value of utility function at local maxima and

picking between Xi = 0, Xi = 0.5 and Xi = 1. It is possible that there are several choices of Xi

which maximize the utility function. Observe that Ui(0, Xi′) = log aXi′ + log(1− 0) = log aXi′ ,

Ui(1, Xi′) = log 1 + log [a (1−Xi′)] = log [a (1−Xi′)] and if there is the third maximum then

Ui(0.5, Xi′) = log 0.5 + log 0.5 = log 0.25.

It is useful to distinguish three cases:

Case 1 (low transferability): a < 0.25

In this cases, all three maxima need to be compared. Since Xi′ ∈ [0, 1], Ui(0.5, Xi′) = log 0.25 >

Ui(0, Xi′) = log aXi′ as well as Ui(0.5, Xi′) = log 0.25 > Ui(1, Xi′) = log [a (1−Xi′)]. Therefore,

maximum utility is always obtained for X∗i = 0.5. In case of low transferability of public services,

municipality i always diversifies. Table 1 gives numerical example.

Case 2 (intermediate transferability): 0.25 ≤ a ≤ 0.5

In this case, also all three maxima need to be compared and it is easy to see that (i) if Xi′ ≤
1 − 0.25/a, X∗i = 1 is optimal solution, (ii) if 1 − 0.25/a ≤ Xi′ ≤ 0.25/a, X∗i = 0.5 is utility

maximizing and if (iii) 0.25/a ≤ Xi′ , X
∗
i = 0 is optimal (for a numerical example, see Table 1).

Loosely speaking, town i specializes if town i′ specializes and it diversifies if neighbouring town

diversifies.
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Note that it is possible that multiple solutions are utility-maximizing. This is the case (i) if

Xi′ = 1− 0.25/a (both X∗i = 1 and X∗i = 0.5 are optimal), (ii) if Xi′ = 0.25/a (both X∗i = 0.5

and X∗i = 1 are optimal) and (iii) if a = 0.5 and Xi′ = 0.25/a = 1 − 0.25/a = 0.5 (all three

X∗i = 0, X∗i = 0.5 and X∗i = 1 are optimal).

Case 3 (high transferability): 0.5 < a < 1

In this case either Ui(0, Xi′) = log aXi′ > log 0.25 = Ui(0.5, Xi′) or Ui(1, Xi′) = log [a (1−Xi′)] >

log 0.25 = Ui(0.5, Xi′). Therefore, only two possible solutions need two be taken into consid-

eration. Municipality i fully focuses either on X or on Y . In particular, if Xi ≤ 0.5, Ui is

maximized for X∗i = 1, if 0.5 ≤ Xi, Ui is maximized for X∗i = 0 (numerical example can be

found in Table 1). In other words, if transferability of public services is high, municipality i

chooses to focus solely on one public service - the one not provided (or provided in low quality)

by neighbouring town.

Existence of multiple solutions is also possible. If Xi′ = 0.5, both X∗i = 0 and X∗i = 1 are

optimal.

Table 1: Finding utility maximizing Xi: Numerical example

a Xi′ Spec. on Y : Xi = 0 Div.: Xi = 0.5 Spec. on X: Xi = 1

a = 0.2 X ′
i = 0.1 Ui = log aXi′ = log 0.02 Ui = log 0.25 Ui = log [a (1−Xi′)] = log 0.18

(case 1) X ′
i = 0.5 Ui = log aXi′ = log 0.10 Ui = log 0.25 Ui = log [a (1−Xi′)] = log 0.10

X ′
i = 0.9 Ui = log aXi′ = log 0.18 Ui = log 0.25 Ui = log [a (1−Xi′)] = log 0.02

a = 0.4 X ′
i = 0.1 Ui = log aXi′ = log 0.04 Ui = log 0.25 Ui = log [a (1−Xi′)] = log 0.36

(case 2) X ′
i = 0.5 Ui = log aXi′ = log 0.02 Ui = log 0.25 Ui = log [a (1−Xi′)] = log 0.02

X ′
i = 0.9 Ui = log aXi′ = log 0.36 Ui = log 0.25 Ui = log [a (1−Xi′)] = log 0.02

a = 0.6 X ′
i = 0.1 Ui = log aXi′ = log 0.06 Ui = log 0.27 Ui = log [a (1−Xi′)] = log 0.54

(case 3) X ′
i = 0.5 Ui = log aXi′ = log 0.30 Ui = log 0.25 Ui = log [a (1−Xi′)] = log 0.30

X ′
i = 0.9 Ui = log aXi′ = log 0.54 Ui = log 0.27 Ui = log [a (1−Xi′)] = log 0.06

Note: Utility-maximizing choice in bold.

It follows that policy mapping X∗i = h(Xi′) giving set of utility-maximizing choices of X∗i based

on Xi′ is given by:

X∗i = h(Xi′) =


1, (Xi′ ≤ 1− 0.25/a ∧ a < 0.5) ∨ (Xi′ ≤ 0.5 ∧ 0.5 ≤ a)

0.5, 1− 0.25/a ≤ Xi′ ≤ 0.25/a

0, (0.25/a ≤ Xi′ ∧ a < 0.5) ∨ (0.5 ≤ Xi′ ∧ 0.5 ≤ a)

(4)

Policy mapping is depicted in Figures 2-7, Xi′ on horizontal axis, X∗i on vertical axis. Note

that in several cases there are multiple X∗i maximizing the utility in municipality i.
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Figure 2: P. mapping X∗i = h(Xi′), a < 0.25
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Figure 3: P. mapping X∗i = h(Xi′), a = 0.25
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Figure 4: P. mapping X∗i = h(Xi′), = 0.3
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Figure 5: P. mapping X∗i = h(Xi′), a = 0.45
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Figure 6: P. mapping X∗i = h(Xi′), a = 0.5
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Figure 7: P. mapping X∗i = h(Xi′), a > 0.5

2.3 Nash equilibria and Pareto optimality

Nash equilibrium {X∗A, X∗B} requires X∗A = h(X∗B) and X∗B = h(X∗A). Once again, distinguish

between three cases:

Case 1 (low transferability): a < 0.25

Since in this case only X∗i = 0.5 maximizes Ui irrespective of Xi′ , there is only one Nash

equilibrium:.
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1. Both municipalities divesify, i.e. {X∗A, Y ∗A, X∗B, Y ∗B} = {0.5, 0.5, 0.5, 0.5}.

It is easy to show that this solution is also a single Pareto-optimal outcome. To see this,

maximize first UA with respect to both XA and XB.

To find the maximum {Xmax
A , Xmax

B }, proceed in two steps: First, use the fact that for a given

Xi′ , U(Xmax
i , Xi′) = max{log aXi′ , log 0.25, log [a (1−Xi′)]}. To maximize U(Xmax

i , Xi′) with

respect to Xi′ it is sufficient to find Xi′ ∈ [0, 1] which maximizes expression max [aXi′ , 0.25, (1−Xi′)].

Second, Xmax
i is given by policy mapping (4).

In this case, maximizing UA yields maximum at Xmax
A = 0.5 irrespective of XB and UA(0.5, XB) =

log 0.25. Analogically, UB is maximized at Xmax
B = 0.5 irrespective of XA and UB(0.5, XA) =

log 0.25. Allocation {X∗A, Y ∗A, X∗B, Y ∗B} = {0.5, 0.5, 0.5, 0.5} is therefore Pareto-superior to all

other allocations.

Summing up, if it is costly to commute to neighbouring municipality, both towns will diversify

and will produce both public services of average quality what is an optimal outcome.

Case 2 (intermediate transferability): 0.25 ≤ a ≤ 0.5

In this case there are three possible Nash equilibria:

1. Municipality A specializes on X, municipality B specializes on Y , i.e. {X∗A, Y ∗A, X∗B, Y ∗B} =

{1, 0, 0, 1}.

2. Municipality A specializes on Y , municipality B specializes on X, i.e. {X∗A, Y ∗A, X∗B, Y ∗B} =

{0, 1, 1, 0}.

3. Both municipalities diversify, i.e. {X∗A, Y ∗A, X∗B, Y ∗B} = {0.5, 0.5, 0.5, 0.5}.

Pareto-optimality can be again investigated by maximizing UA with respect to both XA and

XB.

First, assume a = 0.25. Three maxima are obtained at {Xmax
A , Xmax

B } = {1, 0}, {Xmax
A , Xmax

B } =

{0.5, 0.5} and {Xmax
A , Xmax

B } = {0, 1}. In all allocations, UA = log 0.25. Maximizing utility

of citizens in town B with respect to both XA and XB yields same allocations and in each

UB = log 0.25. It follows that three Nash equilibria are Pareto-superior to all other allocations

and are therefore Pareto-optimal.

Second, assume 0.25 < a ≤ 0.5 and follow the same steps maximizing UA with respect to both

XA and XB. Only two maxima are obtained at {Xmax
A , Xmax

B } = {1, 0} and {Xmax
A , Xmax

B } =

{0, 1}, in both allocations UA = log a. Utility UB is maximized at same allocations and UB =

log a. It follows that if 0.25 < a ≤ 0.5 specialization is Pareto-superior to diversification even

though both are equilibrium outcomes.

7



In case of intermediate transferability, it is possible that municipalities find themselves in sub-

optimal equilibrium in which they both produce both public services of average quality even

though diversification would provide higher utility for citizens. However, neither municipality

has incentive to change the structure of provided services first. Joint action is necessary to

break the deadlock.

Case 3 (high transferability): 0.5 < a < 1

In case of high transferability, diversification is never utility-maximizing choice. Therefore, there

are two possible Nash equilibria:

1. Municipality A specializes on X, municipality B specializes on Y , i.e. {X∗A, Y ∗A, X∗B, Y ∗B} =

{1, 0, 0, 1}.

2. Municipality A specializes on Y , municipality B specializes on X, i.e. {X∗A, Y ∗A, X∗B, Y ∗B} =

{0, 1, 1, 0}.

To see that both Nash equilibria are Pareto-optimal, maximize once again UA with respect to

both XA and XB. Two maxima are obtained at {Xmax
A , Xmax

B } = {1, 0} and {Xmax
A , Xmax

B } =

{0, 1}. In both allocations, UA = log a. Utility UB is maximized at same allocations and in both

UB = log a. Therefore, Nash equilibria in which municipalities diversify are Pareto-superior to

all other allocations.

If there are little costs associated with commuting to neighbouring municipality, both will

specialize on production of single public service what is an optimal outcome.

3 Conclusion

We have provided a simple analytical approach to issue of specialisation and diversification

in production of public services showed that in case of intermediate transferability of public

services between two municipalities, suboptimal equilibrium can arise. Extension two cases of

more than two municipalities as well as empirical relevancy of this scenario will be subject of

further research.
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