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Abstract

We propose a model of production featuring the trade-off between employing

workers versus employing robots and analyze the extent to which this trade-off is

altered by the emergence of a highly transmissible infectious disease. Since workers

are — in contrast to robots — susceptible to pathogens and also spread them at

the workplace, the emergence of a new infectious disease should reduce demand

for human labor. According to the model, the reduction in labor demand concerns

automatable occupations and increases with the viral transmission risk. We test

the model’s predictions using Austrian employment data over the period 2015-2021,

during which the COVID-19 pandemic increased the infection risk at the workplace

substantially. We find a negative effect on occupation-level employment emanating

from the higher viral transmission risk in the COVID years. As predicted by the

model, a reduction in employment is detectable for automatable occupations but not

for non-automatable occupations.

JEL classification: I14, J21, J23, J32, O33.

Keywords: Automation, robots, pandemics, viral transmission risk, occupational

employment, shadow cost of human labor.
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1 Introduction

What are the effects of the emergence of new transmissible diseases on employment and

do these effects depend on the automatability of the affected occupations? To answer

these questions, we propose a model of production in the age of automation and an

emerging pandemic. This allows us to derive predictions on the employment effects of

the viral transmission risk of different occupations differentiated by their automatability.

Subsequently, we test the model’s predictions empirically on Austrian employment data

over the period 2015-2021 during which the COVID-19 pandemic increased the infection

risk at the workplace exogenously.

In general, the labor market impacts of the COVID-19 pandemic have been shown to

vary across workers, industries, and countries around the world (Di Porto et al., 2022;

Eurofund, 2022; Blanas and Oikonomou, 2023). Apart from labor market policies, the

main factors explaining the differentiated impact of the COVID-19-induced recession

across socio-demographic groups, occupations, and industries are the job profiles, notably

their task structure. Ding and Molina (2020) analyse the employment effects of the

COVID-19 pandemic and the automation risk of occupations jointly. They argue that

the pandemic and the necessary containment measures accelerated automation — a

phenomenon they refer to as “forced automation”.1 In addition, regarding the task profile

of occupations, Flisi and Santangelo (2022) show that both the technical teleworkability

as well as the level of social interaction involved in a job were relevant for the extent of

employment reductions in 2020 in the European labor market.2 For both characteristics,

teleworkability and social interaction, Flisi and Santangelo (2022) rely on the indicators

developed by Sostero et al. (2020) that are defined at a detailed level of occupations and

based on the description of tasks performed in the corresponding occupations.

To analyse the impact of the COVID-19 pandemic, Chernoff and Warman (2023)

develop a viral transmission risk (VTR) index and combine it with the routine task

intensity index (RTI) of Autor et al. (2003) to characterize the workforce of the United

States (U.S.) according to the two dimensions, automation risk and infection risk at

the workplace. We apply these indicators to study the employment trends for different

occupations during the COVID period, differentiated by their automation and viral

transmission risk.

1Before the emergence of COVID-19, automation has already been identified as an important phe-
nomenon that affects many occupations, see, for example, Frey and Osborne (2017), Arntz et al. (2017),
and Abeliansky et al. (2020) for assessments of the extent to which future automation will impact
employment.

2In addition to these characteristics, the authors also analyse the role of occupations being “critical”
for the functioning of the economy, a categorisation that, however, was the result of political decisions.
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The mentioned “automation push” works via different channels. First, in an attempt to

avoid a forced shut-down of operations due to widespread workplace infections, firms may

pre-emptively consider substituting machines for workers (shielding incentive). Second,

as in any recession, the adjustment costs associated with investments in automation have

gone down during the COVID-19 induced recession (operational incentive). Third, more

frequent and repeated work absences of staff due to illness, as well as enduring health

problems (such as the long-COVID syndrome) reduce the productivity of human labor

relative to automated labor (Fischer et al., 2022). It is the last channel, which we will

refer to as productivity incentive that this paper is interested in.

In line with Ding and Molina (2020), we expect that a potential automation push

should be identifiable for occupations that are prone to automation, where the automation

probability is a function of the tasks typically performed in the corresponding occupation

(Autor et al., 2003; Frey and Osborne, 2017). Importantly, if the accelerated automation

works via the productivity incentive, as we hypothesize, the automation push and the

associated (medium-to-short term) employment effect should be asymmetric. More pre-

cisely, conditional on automatability, occupations that involve intensive social interaction

and therefore carry a high viral infection risk, should be more affected. As a result, we

should observe stronger declines in employment and in hours worked (“work volume”)

for occupations that can be replaced by machines and involve a viral infection risk. This

impact of social interaction/viral transmission risk is a new element, in the sense that

it started having economic impacts only with the onset of COVID-19. Korinek and

Stiglitz (2021) refer to this new influence on the factor input decision of firms as extra

shadow cost on physical interaction with humans (Broady et al., 2023). The bottom line

is that COVID-19 altered the human-machine trade-off to the detriment of the former,

thereby “forcing” automation. The extent to which individual occupations are affected

by forced automation depends on whether the occupation is automatable, and if so, the

degree of infection risk that it carries. Note that, from a theoretical perspective, the

differentiated employment effects resulting from forced automation stems from a decline

in the occupational labor demand for occupations with both high automation and high

infection risk. In the empirical application, we have to rely on equilibrium outcomes for

employment and hours worked, which are the result of demand and supply side factors.

Prettner and Stöllinger (2023) find that the strongest decline in employment during

the COVID years (2020-2021) were registered for occupations that are characterized by

high automatability and a high infection risk at the workplace. The same is true for

hours worked, where the differentiated labor market outcomes are even more marked

because the number of hours worked also include the adjustment at the intensive margin
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within occupations. Motivated by this descriptive evidence, we propose a theoretical

model in which automatable labor and machines are perfect substitutes. Importantly,

the implied human-machine trade-off is affected by the onset of COVID-19 (or more

broadly, any pandemic), with the effect varying across occupations as a function of the

degree of social interaction involved. This is consistent with the empirical evidence prior

to the COVID-19 pandemic, where Houstecka et al. (2021) show that individuals who

are employed are on average 35.5% more likely to be infected by the flu virus, with the

likelihood increasing with a higher level of human contact at work. In addition, Pichler

and Ziebarth (2017) utilize access of sick employees to paid sick-leave to show that less

contact at work decreases contagion. Based on the theoretical considerations, we build

an empirical model that features the infection risk at the workplace as a key variable. We

are able to show that this infection risk reduces employment and hours worked during

the pandemic for occupations with a high infection risk. As predicted by the theoretical

model, this effect is detectable only for automatable jobs.

The contribution of this paper is twofold. First, we introduce a theoretical framework

that can be used to study the employment-automation decision in a pandemic. Second, we

are able to identify the negative effect of the shadow cost of human labor on employment

and hours worked in Austria empirically. While we show this effect for the Austrian labor

market, there are reasons to believe that this effect is equally present in other countries

since the pandemic was a truly global phenomenon.3

The remainder of the paper is structured as follows. Section 2 presents the theoretical

model. In Section 3, we describe the data in detail. Section 4 is devoted to testing the pre-

dictions of the model empirically. Finally, we conclude and draw policy recommendations

in Section 5.

2 Infection risk and automation: theoretical considerations

We develop a model featuring a task-specific shadow cost of labor that alters the trade-off

between human labor and machines in favor of the latter. The model set-up follows

Krenz et al. (2021) in assuming that the economy produces final output according to the

production function

Yt = Ht
1−α

J∑

ω=1

xαt,ω, (1)

3While the shadow cost of human labor must be expected to be comparable across countries, as long
as the occupations have similar task structures, different labor market policy responses — notably the job
retention schemes — are likely to have led to differences in the relative size of the effect on employment
on the one hand and hours worked on the other hand.
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where H is employment of high-skilled, non-automatable workers, xω is the amount of

tasks ω used as an intermediate input in the production of final output, and α is the

elasticity of final output with respect to the use of tasks. From the production function

and the assumption of perfect competition, the wage rate of non-automatable workers,

Ht, follows as

wt,H = (1− α)H−α
J∑

ω=1

xαt,ω = (1− α)
Yt
Ht

. (2)

As is well-known from the literature on endogenous economic growth (Romer, 1990; Jones,

1995), the inverse demand function for intermediate inputs, in our case tasks, follows as

prt,ω = αH1−α
t xα−1

t,ω . (3)

The production of tasks is performed with automatable labor services or with machines.

Firms therefore face a production function of the form

xt,ω = [at,l,ω(it,l,ω) · lt,ω + at,p,ω · pt,ω]β , (4)

where lt,ω is employment of automatable workers at time t producing task ω. In the

empirical application, these task-specific workers, for whom automation is technologically

feasible, will be proxied by occupations. Furthermore, at,l,ω is the productivity of

automatable workers at time t. Note that this productivity depends on the infection risk

at the workplace, it,l,ω ∈ (0, 1), which is the shadow cost of labor. Since the degree of social

interaction (i.e., the viral infection risk) was economically irrelevant in the pre-COVID

era, it,l,ω is 0 for all ω if t < τ , where τ is the time point of the COVID-19 outbreak.

For t ≥ τ , it,l,ω varies over tasks ω. Tasks ω are sorted such that the shadow cost of

labor it,l,ω is increasing in ω so that ∂it,l,ω/∂ω > 0 . Next, pt,ω is the amount of robots

employed by the firm producing task ω at time t, with corresponding robot productivity

being at,p,ω.
4 For simplicity and in line with the literature on automation (Acemoglu and

Restrepo, 2018, 2020), we assume that automatable labor used for producing task lt,ω

and robots, pt,ω, are perfect substitutes. Finally, β is the elasticity of task production

with respect to automatable labor input.

4For a non-exhaustive list of recent contributions that analyze the effects of automation in terms of
robots on various outcomes such as employment, inequality, and economic growth, see Acemoglu and
Restrepo (2018, 2020); De Vries et al. (2020); Acemoglu and Restrepo (2022), Prettner and Strulik (2020),
Hemous and Olsen (2022), and Abeliansky and Prettner (2023).
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Task producing firms maximize their profits given by

πt,ω = prt,ωxt,ω − wt,llt,ω − γrpt,ω

= αH1−α
t [at,l,ω(it,l,ω) · lt,ω + at,p,ω · pt,ω]αβ − wt,llt,ω − γrpt,ω, (5)

where r is the capital rental rate and γ is the cost of one robot in terms of physical

capital (Krenz et al., 2021). The productivity of robots differs across tasks, which reflects

the ease with which the particular task can be automated. Given the variation in robot

productivity and the variation in the shadow cost of labor, there will be a sorting of tasks.

Producers will choose to employ robots instead of workers in tasks with comparatively

high productivity of robots and a comparatively high shadow cost of labor (i.e., a high

degree of infection risk at the workplace). By contrast, firms producing tasks with a

comparatively low shadow cost of labor and a low level of technological feasibility of

automation will prefer to employ workers instead of robots.

Thus, there will be a threshold level of the relation between the infection risk and the

technological feasibility of automation at which a firm is indifferent between employing

workers or robots. Below the threshold, a firm will employ workers and above the

threshold, a firm will employ robots. Profit maximization implies the following first-order

conditions

∂πt,ω
∂lt,ω

= α2βH1−α
t [at,l,ω(it,l,ω) · lt,ω + at,p,ω · pt,ω]αβ−1 at,l,ω(it,l,ω)− wt,l

!
= 0, (6)

∂πt,ω
∂pt,ω

= α2βH1−α
t [at,l,ω(it,l,ω) · lt,ω + at,p,ω · pt,ω]αβ−1 at,p,ω − γr

!
= 0. (7)

From (6) and acknowledging that pt,ω = 0 for firms that produce with humans, we derive

employment of low-skilled workers as

lt,ω =

[
wt,l

at,l,ω(it,l,ω)α2βH1−α
t

] 1
αβ−1

· 1

at,l,ω(it,l,ω)
. (8)

From (7) and acknowledging that lt,ω = 0 for firms that produce fully automated at time

t, employment of robots follows as

pt,ω =

[
γr

α2βH1−αap,ω

] 1
αβ−1

· 1

ap,ω
. (9)

Plugging these results back into the expression for profits (5) and setting the other
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production factor equal to zero yields profits of firms that produce with workers (πt,ω,l)

as

πt,ω,l = (1− αβ)αH1−α
t

[
wt,l

at,l,ω(it,l,ω)α2βH1−α
t

] αβ
αβ−1

(10)

and profits of firms that produce with robots (πt,ω,p) as

πt,ω,p = (1− αβ)αH1−α

[
γr

α2βH1−αap,ω

] αβ
αβ−1

. (11)

The threshold level of the ratio of productivity of workers versus robots below which firms

would produce with robots and above which firms would produce with human workers

is obtained by setting the profits of firms that only produce with workers equal to the

profits of firms that only produce with robots. After some reformulations, we arrive at

at,l,ω(it,l,ω)

at,p,ω
=

wt,l

γr
. (12)

This expression has a very intuitive interpretation: The left-hand side is the ratio between

the productivity of human workers and robots, while the right-hand side is the ratio

between the price of human labor and the price of robots. If, ceteris paribus, the wage

rate is higher, the threshold productivity level above which firms produce with human

labor will be higher. If, by contrast, the interest rate (r) or the capital input requirement

for robots (γ) are higher, the threshold productivity level above which firms produce

with human labor will be lower (cf. Krenz et al., 2021). In addition, the left-hand side of

equation (12) shows that the threshold is jointly determined by the relative productivity

of labor versus robots and the shadow cost of human labor, it,l,ω, as determined by the

infection risk at the workplace. In the empirical investigation, we focus on the impact of

this shadow cost because it is exactly this factor that changed during the COVID period,

while it was essentially zero before COVID.

3 Data description

The data used in this study was retrieved from the Austrian microcensus (Mikrozensus-

Arbeitskräfteerhebung) for the period 2015-2021. This source provides internationally

comparable employment and housing statistics for the Austrian economy, and includes

information on relevant labor market indicators (e.g., unemployment) as well as socio-
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demographic ones (e.g., education). It includes information from about 22,500 (randomly

selected) households in Austria on a quarterly basis.

The main variables we use from the survey are the number of persons employed

and the total number of annual hours worked (i.e., “work volume” or Arbeitsvolumen).

Following the definition from the International Labour Organisation (ILO), employed

individuals include employees and self-employed people. In addition, those who receive

child-care allowance and those on parental leave pay are also included. We follow the

methodology of Statistik Austria (2019) and calculate the work volume (hours worked)

using the actual hours worked during the week of the interview in both primary and

secondary occupations of persons employed. To get the annual work volume, the actual

hours worked per week were multiplied by 52. It should be noted that employment

aggregates at any level of aggregation (e.g., by occupation or by gender) are retrieved

using the weighting factor for each person in the sample.

The microcensus contains a wide range of individual data, especially a large set

of socio-economic characteristics. Of importance are the occupations (minor groups)5

because automation risk and viral transmission risk vary across occupations. The industry

affiliation is also important (industry groups).6 We also make use of the information of

the region in which persons work, which is provided at the NUTS-2 level, corresponding

to the Bundesländer in Austria.

In addition, we differentiate the employment and work volume by demographic

characteristics, notably gender, age, and educational attainment. The educational

attainment follows the International Standard Classification of Education (ISCED) and

we aggregate ISCED categories 1 and 2 to a low-skilled group, ISCED categories 3 and 4

to a medium-skilled group and ISCED categories 4 or higher to a high-skilled group. We

also build four age cohorts comprising those aged 15-24, 26-49, 50-64, and those older

than 65 years. Finally, we combine the Austrian employment data with the RTI and

VTR indices described in Section 1.7 The underlying information for these indices comes

from the U.S. O*NET repository.8

5Minor groups are occupations as reported in the International Classification of Occupations 2008
(ISCO-08) at the 3-digit level comprising 130 occupations.

6Industries are reported according to the Statistical Classification of Economic Activities in the
European Community, Revision 2, or NACE Rev. 2 for short. The data are available up to the level of
NACE industry groups (3-digit level).

7An in-depth description and discussion of the indices is provided in Section 4.1 and in the Appendx.
8The O*NET is a publicly available electronic list of all existing occupations in the United States,

recorded at the Standard Occupational Classification (SOC) System. It contains a large set of variables
that describe work and worker characteristics in each occupation. Of the numerous worker and job-
oriented data categories, the relevant one for calculating the RTI index and the VTR index are (i) work
activities, (ii) abilities, and (iii) work contexts. We combine the scores of the selected “tasks” within
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Table 1: Summary statistics

Variable Observations Mean Standard Minimum Maximum
Deviation

(ln) Working hours 164,878 11.9396 1.1506 3.5795 16.6319
(ln) Employment 171,812 4.6028 0.9715 1.5644 9.4044
Age 171,812 2.1419 0.8019 1 4
Skill 171,812 2.2112 0.6843 1 3
Gender 171,812 1.5717 0.4948 1 2
RTI 171,812 0.5470 0.2043 0 1
VTR 171,812 0.3976 0.1372 0.0769 0.9667

Notes: Statistics for ISCO 1-digit occupations, NACE Rev.2 1-digit industries and NUTS-2
regions are not included since they are categorical variables with no “quantitative” interpre-
tation.

Table 1 below shows the summary statistics of the variables used in the empirical

investigation. Although the standard deviation of the first two variables is not so large

in terms of the mean according to the values from the table it should be kept in mind

that these values are in log form. When these are converted to their level equivalents,

the standard deviation becomes a larger share of the mean. In terms of age, the largest

group is that of workers between 25 and 49 years old (group 2). The mean is larger

than 2 given that the two higher groups (those between 50 and 64 and 65 and above

represent a larger share than those between 15 and 24 years of age). With respect to

the skill level, there are more individuals in “high-skilled” jobs (with assigned value 3)

than in “low-skilled” jobs (with assigned value 1) because the mean is also larger than

2. The largest group, however, is the “medium-skilled” group (with assigned value 2).

The mean of the RTI is around 0.55 but there seems to be some dispersion as indicated

by the standard deviation. Finally, regarding the gender, there are more males in the

sample than females because the mean is higher than 1.5.

4 Empirical model and results

4.1 Model specification

In this section, we aim to test the model predictions — namely the relevance of the

productivity incentive for accelerating automation in the advent of a pandemic. To this

end, we associate the shadow cost of human labor, (it,l,ω), which governs the allocation

these broader categories to the indices and sub-indices as described in Prettner and Stoellinger (2023).

9



decision for producing tasks, with the viral transmission index (VTR) of Chernoff and

Warman (2023) (including the adjustments introduced in Prettner and Stoellinger, 2023)

in combination with a dummy variable for the COVID years (2020 and 2021). As seen in

Table 1 above, the VTR ranges from 0 to 1 and reflects the degree of viral transmission

risk at the workplace of occupational groups.9

With the general logic of a difference-in-difference in mind, we argue that we can

identify the shadow cost of labor with an interaction between the VTR and the dummy

for the COVID period and study its impact on Austrian employment (and hours worked)

at the occuaptional level. We therefore consider occupations as the empirical counterpart

of the automatable labor used in the production of tasks. The rationale for using this

interaction term as indicator for the shadow cost is the following. In pre-COVID years,

the shadow cost of labor was zero for all occupations. From 2020 onward, the occupation-

specific shadow cost is taken into account by firms when making their decision of whether

producing tasks with (automatable) human labor or with machines. This shadow cost is

higher if the viral infection risk, as measured by the VTR, is higher. Irrespective of any

pre-COVID-19 relationship between the VTR and employment, which is likely in view of

the structural developments towards a service economy (that features more occupations

with a high VTR), any additional effect of the COVID dummy variable for occupations

with a high VTR value can be assigned to the shadow cost of labor.10 Important for our

line of reasoning is that we should not be able to detect a similar effect of the interaction

term for non-automatable occupations.

The labor market outcomes of interest are employment and the number of hours

worked, which are used alternatively as depended variables. Among the numerous

dimensions of the employment data, the most important dimension is occupations for two

reasons. First, they are directly related to the theoretical model. Second, the variation

in the VTR (our main variable of interest) and in the RTI comes from occupations.11

Employed labor at time t, Nt ∈ (number of persons employed, hours worked), is

divided into automatable labor, which we denote as Lt, and non-automatable labor,

9In principle, the values of the VTR range from 0 to 1 across all occupations because the values were
standardized. However, the standardisation was made at the level of 4-digit ISCO occupations. When
aggregating the occupations from the 4-digit to the 3-digit ISCO level, the maximum is below 1 if the
resulting top 3-digit occupation contains more than one 4-digit occupations. This is the case in the VTR
but not in the case of the RTI.

10Implicitly we assume that variations in the employment level of occupations with a high VTR that
are explained by the COVID-dummy, result from changes in the demand for labor for these occupations.

11The VTR and the RTI have no variation over time, because the underlying information on tasks for
the occupations in the O*NET repository is updated in irregular intervals. More precisely, the updates
are regular but each update only covers a subset of occupations, which makes it difficult to trace the task
structure of individual occupations.
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Ht, with Nt = Lt +Ht. For the distinction between the two groups of occupations, we

use the routine-task intensity index of Autor et al. (2003) in the version described in

Acemoglu and Autor (2011). In line with Chernoff and Warman (2023), we interpret

occupations as automatable when the RTI index is above 0.5 and as non-automatable

otherwise. We are mainly interested in the effect of the shadow cost of human labor

of automatable occupations, il,t,ω, which is economically relevant only in the COVID

years. The restriction to automatable occupations (in the main specification) is due to

the fact that the productivity incentive should only lead to an accelerated substitution of

human labor by machines for occupations where this is possible. Empirically, we proxy

the shadow cost of human labor by the VTR and interact it with an indicator variable

for the COVID period. Hence, we estimate the following empirical specification

Lg,s,a,ω,j,r,t = α+ β1 · V TRω + γ · (V TRω · COV ID) + β2 · COV ID + β3 ·RTIω +

+genderg + skills + agea + occΩ + indj + regionr + εg,s,a,ω,j,r,t, (13)

where gender, educational attainment (or skill for short), and age are indicator variables

with the corresponding indices g, s, and a. Furthermore, we include indicator variables

for industries (j), for regions (r), and for occupations (ω). The indicator variables

for occupations are at the level of major groups (ISCO-1-digit occupations), while the

employment data are available at the level of minor groups (ISCO-3-digit occupations).

This is why the subscript of the VTR and the RTI (in both cases ω) differs from that

of the indicator variable for occupations (Ω). Note again, that the VTR and the RTI

variable do not vary over time but only over occupations.12 Equally important is the

variable COVID, which is a time dummy taking the value 1 for the years 2020 and 2021,

and zero otherwise. The COVID dummy is essential because it belongs to the interaction

term V TR · COV ID, which allows us to estimate the effect of the shadow cost of labor

on labor demand — and consequently on employment and hours worked — in the advent

of the pandemic. If the viral transmission risk led to a push for robot adoption — as

we hypothesize — then employment and the number of hours worked in automatable

occupation ω should be affected negatively. The extent to which occupation ω is affected

by the pandemic-induced automation push depends on its VTR.

Note that the main effect of the VTR alone is not indicative of the shadow cost of

human labor. It rather captures the overall employment trends of occupations that involve

12The lack of time variation of the VTR and the RTI is the reason why we do not refer to the indicator
variables that capture the richness of variation in the employment variables as fixed effects but as indicator
variables.

11



more or less social interaction (and their associated viral transmission risk). Notably,

employment in occupations with a high degree of social interaction was increasing over the

last decade for several reasons that are unrelated to the viral transmission risk.13 Firstly,

most occupations with high social interaction have a lower risk of being automated. A

second reason is the structural shift of the Austrian economy towards services, which

also increased the demand for labor with more social interaction.

Overall, the COVID-19 dummy allows identifying the effect of the shadow cost

of human labor on employment and hours worked in the following way. On average,

occupations with a high VTR experienced an increase in labor demand. This may even

be the case for the pandemic years. However, since the pandemic, the VTR also imposes

a shadow cost, which reduces demand for labor. Thus, we can identify the effect of the

shadow cost on labor demand and the resulting employment with the coefficient γ of the

interaction term between the VTR and the COVID variable. More precisely, we expect

γ to be negative for the sub-sample of automatable jobs, Lt, which is the dependent

variable in the main regression in Equation (13). Moreover, when the sample is restricted

to automatable occupations, we still control for the RTI. Since the RTI is indicative of

the ease with which occupations can be automated, we expect a negative sign for the

corresponding coefficient β2.
14

4.2 Empirical results

The estimates from our empirical model are presented in Table 2 for both employment

and hours worked. The main results are those in columns (1) and (4), which includes

the interaction term V TR · COV ID for the sample of automatable occupations, that is,

those occupations for which the shadow cost of labor (potentially) exerts an economic

impact from 2020 onward.

In line with our central hypothesis, we find that the coefficient of the interaction

term is negative and statistically significant. The main effect of the VTR is positive,

but only marginally significant. Nevertheless, this positive effect is also expected due

to the structural developments mentioned earlier. Furthermore, the estimate for the

RTI is negative, suggesting that the higher the RTI, the lower is, ceteris paribus, the

(occupation-industry-level) employment of labor. We observe that, on average, those with

medium skills exhibit higher employment than those with low skills. In addition, those

aged between 25 and 49 are also exhibiting more employment than those in the reference

13Once more this effect can be supposed to come primarily from changes in firms’ labor demand.
14We show in the appendix that the exclusion of the RTI variable does not change the results.
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Table 2: COVID-related shadow cost of labor and labor market outcomes

Dependent variable: Employment (log) Work volume (log)

Non Non
Sample: Automatable automatable All Automatable automatable All

occupations occupations occupations occupations occupations occupations

(1) (2) (3) (4) (5) (6)

Female workers 0.0155 -0.0123 -0.0025 -0.2142*** -0.2405*** -0.2408***
(0.0409) (0.0280) (0.0314) (0.0405) (0.0259) (0.0286)

Medium-skill 0.1597** 0.2102*** 0.1631*** 0.1635** 0.2505*** 0.1738**
(0.0556) (0.0238) (0.0439) (0.0645) (0.0379) (0.0519)

High-skill 0.0362 0.2019* 0.1004 0.0352 0.2767** 0.1243
(0.0747) (0.0875) (0.0683) (0.0890) (0.1006) (0.0838)

Age 25-49 0.1300*** 0.1148** 0.1189*** 0.1569** 0.2036*** 0.1713***
(0.0317) (0.0358) (0.0278) (0.0526) (0.0542) (0.0433)

Age 50-64 -0.0382 -0.0389 -0.0408 -0.0525 0.0418 -0.0154
(0.0429) (0.0470) (0.0359) (0.0506) (0.0686) (0.0482)

Age 65 + -0.4841*** -0.4610*** -0.4547*** -1.4997*** -1.2005*** -1.3265***
(0.0441) (0.0683) (0.0423) (0.0627) (0.1156) (0.0911)

RTI -0.3856** -0.1330 -0.1431 -0.5919*** -0.1219 -0.1829
(0.1313) (0.1282) (0.0944) (0.0935) (0.2098) (0.1394)

VTR 0.5726* 0.3205*** 0.4102** 0.4733* 0.3840** 0.4031*
(0.2756) (0.0793) (0.1305) (0.2154) (0.1300) (0.1879)

VTR x COVID -0.0772** 0.0596 0.0296 -0.1513*** 0.0447 -0.0032
(0.0214) (0.0661) (0.0357) (0.0390) (0.1062) (0.0573)

COVID 0.0207*** -0.0188 -0.0155 -0.0138 -0.0811* -0.0676**
(0.0051) (0.0292) (0.0157) (0.0145) (0.0359) (0.0208)

Constant 4.4865*** 4.3568*** 4.3799*** 12.1105*** 11.7234*** 11.8428***
(0.1808) (0.1009) (0.0835) (0.1347) (0.1830) (0.1465)

Industry FE � � � � � �
Occupation FE � � � � � �
Region FE � � � � � �
Observations 96,671 75,141 171,812 92,693 72,185 164,878
R-sq. 0.3515 0.3472 0.3326 0.3279 0.3049 0.3017

Note: *, ** and *** indicate statistical significance at the 10%, 5% and 1% level respectively. Two-way standard
errors clustered at the level of ISCO-1-digit occupations and years in parenthesis.
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category (between 15 and 24 years of age), while those above the official retirement age

work less in relative terms to those in the reference category.

The second column contains a “placebo” specification. This specification is identical

to the one from models (1) and (4), but estimates the effect for the sample of non-

automatable occupations. In this placebo regression — as expected — the RTI variable is

not statistically significant15 and, even more important, the coefficient of the interaction

term V TR ·COV ID is not statistically significant either. This is to be expected because

— even if there was a productivity incentive — non-automatable jobs simply cannot be

replaced by machines.

The third column presents the results for the entire sample. These are more similar

to those for the placebo regressions, which cannot be explained with the number of

observations. Rather, it seems that the employment effect of the shadow cost is specific

to the automatable occupations, exactly as predicted in the theoretical model.

The second set of results (columns 4-6) repeats the empirical exercise using hours

worked (work volume) instead of employment as the dependent variable. The difference

is that hours worked also captures the within-occupation margin of the adjustment in

labor demand and resulting employment. This within-occupation margin is important

because in view of the generous job retention scheme in Austria (Kurzarbeitsregelung),

the reduction in labor demand on the side of firms took primarily the form of reducing

working hours. Most European countries, including Austria, implemented job retention

schemes during the COVID-inflicted recession. This differs to the U.S., which opted

for extending unemployment benefits. Consequently, the different labor market policy

responses to the COVID-inflicted recession explain why the unemployment figures went

up much stronger in the U.S. than in the EU. Therefore, we expect to see in Austria a

larger effect of the shadow price of labor for hours worked than for employment (-0.077).

Indeed, with -0.151, the magnitude of the coefficient of the interaction term in the

model with hours worked as the dependent variable is about twice as large as in the

employment model. Qualitatively, the results of the two sets of models (for hours worked

and for employment) are fully aligned. The only difference worth mentioning is that the

coefficient for gender (a variable takes takes the value of 1 for female workers), is negative

in the model for hours worked. This can be explained by the fact that female workers

15The lack of explanatory power of the RTI for what we have defined as non-automatable occupations
is not a necessary outcome. Rather, it confirms the appropriateness of our threshold for distinguishing
automatable from non-automatable occupations that we had set to 0.5 following Chernoff and Warman
(2023). If the RTI had an impact on employment (hours worked) in this group, this would suggest that
we had chosen an inappropriate threshold value. Fortunately, this is not the case so that we interpret the
insignificant coefficient for the RTI in the placebo regression as confirmation for our sample split.
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reduced working hours more strongly than their male counterparts. One explanation for

this pattern is that women seem to work in industries and regions where short-term work

was more prevalent, another is that in view of the need for home schooling and other

household-related obligations, women reduced — or were forced to reduce — working

hours more strongly.

In the Appendix, we provide some robustness analyses, where we remove the RTI

index (Table 5), trim the data to remove those observations with the highest/lowest

values of the RTI index (Table 6), use a three-way clustering approach instead of a

two-way clustering approach (7), and we change the VTR index, that is, we use the

original VTR index as developed by Chernoff and Warman (2023) (8). Results remain

unchanged.

We finish the discussion of the results by looking at the marginal effects of the

COVID-period on employment and hours worked. As indicated by the negative coefficient

of the interaction term in our regression model, the magnitude of the effect on labor

market outcomes of automatable occupations depends on the VTR index. Figure 1

shows the marginal effects of the COVID-dummy on employment and hours worked,

respectively, for occupations with different levels of social interaction/viral transmission

risk.
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Figure 1: Marginal effects of COVID on labor market outcomes

Source: Regressions in column 1 and column 4 in Table 2.

Note: The sample only includes automatable occupations.

The marginal effects visualize the fact that the impact on hours worked in Austria

was much stronger than that on employment. Also, the point estimate of the employment

effect is positive for occupations with very low VTR values. This is not the case for the

point estimate of the effect on hours worked, which is always negative. Evaluated at

the mean VTR value, 0.39, the marginal effect of the COVID-period on hours worked is

-0.07216, while for occupations with the maximum value of 1, the effect is -0.165. Note

that this is exactly the pattern expected from the shadow cost of labor stemming from

the infection risk.

16For occupations with a VTR of 0.39, the COVID-years lead to a reduction in hours worked of 7.2%.
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5 Conclusions

A theoretical model of production based on human labor and automation technologies

shows that firms are more prone to automating occupations that are associated with

a greater infection risk in times of rapidly spreading infectious diseases such as in

pandemics. We test this theoretical prediction using Austrian microcensus data on the

routine task intensity of different occupations as a proxy for technological automatability

and the viral transmission risk of an occupation as a proxy for the susceptibility of this

occupation during times of pandemics. Controlling for other important aspects that affect

employment (such as gender, age, and the skill level), we show that infection risk at work

in times of pandemics indeed reduces employment but only for automatable occupations.

Thus, the theoretical implications are supported by the available empirical evidence.

Our results show that occupations that are susceptible to viral transmission and to

automation face a particularly grim situation in times of a pandemic. While occupations

that are difficult to automate could benefit through job retention schemes (“Kurzarbeit”

in German speaking countries) in times of a pandemic, occupations that are susceptible to

automation may face permanent employment reductions. This has consequences for the

optimal policy response because investing in retraining a worker whose job is susceptible

to automation and viral transmission may be a better option during a pandemic than

to put these workers on a furlough scheme. For workers that are not susceptible to

automation, however, the opposite is likely to hold true.

Throughout this paper we discussed the effects of viral transmission through social

interaction in the context of the COVID-19 pandemic. However, the mechanism and the

empirical results remain relevant and may even become more prevalent in the future. The

reason is that growing urbanisation, an increasing level of international integration, and

humans expanding into natural habitats with pathogens against which they do not yet

have an acquired immunity (e.g., deforestation in Brazil) all increase the probability of

an outbreak of another pandemic, or the likelihood with which infections spread (Marani

et al., 2021; Bloom et al., 2022). In addition, the relevance is not only restricted to health

crises because the productivity effect may also kick in in a number of other scenarios.

For example, one could think of societies reaching a degree of polarisation such that the

gathering of a larger group of workers may result in regular disputes and conflicts at

the workplace which would, just like health issues, also reduce labor productivity. Many

more scenarios are imaginable though chances are that the next event increasing the

shadow cost of labor will (as with COVID-19) be an entirely unexpected one.

Future research avenues include extending the analysis to see whether the results we
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have found also hold for other countries and whether they depend on the underlying

policy response to pandemics such as COVID-19.
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Appendix

5.1 Appendix 1: Definition of the RTI and VTR indices

The routine-task intensity (RTI) index is composed of 16 O*NET variables, which

are grouped into five sub-indices: non-routine analytical cognitive (NRA), non-routine

interpersonal cognitive (NRI), non-routine manual (NRM), routine cognitive (RC), and

routine manual (RM) tasks. The relevant variables and their origin in the O*NET

database are listed in Table 3.

Table 3: Definition of the RTI index

Sub-Index and variables therein Category in O*NET

Routine cognitive tasks (RC)

Importance of Repeating Same Tasks Work Context

Importance of Being Exact or Accurate Work Context

Structured versus Unstructured Work Work Context

Routine manual (RM)

Pace Determined by Speed of Equipment Work Context

Spend Time Making Repetitive Motions Work Context

Controlling Machines and Processes Work Activities

Non-routine-analytical (NRA)

Analyzing Data or Information Work Activities

Thinking Creatively Work Activities

Interpreting the Meaning of Information for Others Work Activities

Non-routine-cognitive (NRC)

Establishing and Maintaining Interpersonal Relationships Work Activities

Guiding, Directing, and Motivating Subordinates Work Activities

Coaching and Developing Others Work Activities

Non-routine-manual (NRM)

Operating Vehicles, Mechanized Devices, or Equipment Work Activities

Spend Time Using Your Hands to Handle, Control, or Feel

Objects, Tools, or Controls

Work Context

Manual Dexterity Abilities

Spatial Orientation Abilities

Source: O*NET version 24.3; authors’ own calculations following the definition of the RTI in

Autor et al. (2003).

The construction of the VTR index is less complex in the sense that it does not

consist of sub-indices but simply of five variables (or seven variables in the case if the

adjusted VTR which is used for the main specifications). All variables originate from

the category “Work Context” and the category “Work Activities” within the O*NET
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repository. The relevant variables are listed in Table 4.

Table 4: Definition of the VTR index

Variables defining the VTR Category in O*NET

Physical proximity Work Context

Face-to-Face Discussions Work Context

Exposed to Disease or Infections Work Context

Outdoors, Exposed to Weather Work Context

Outdoors, Under Cover Work Context

Performing for or Working Directly with the Public Work Activities*

Assisting and Caring for Others Work Activities*

Source: O*NET version 24.3; authors’ own calculations based on the definition of the VTR in

Chernoff and Warman (2023).

Note: The variables marked by an asterisk are additional variables added by Prettner and

Stoellinger (2023)

5.2 Appendix 2: Additional empirical results (robustness checks)

Appendix Table 5 reports the same results as Table 2 in the main text, only that it omits

the RTI as a control variable. Apart from that, the model is identical and Appendix

Table 5 show that none of the results are sensitive towards the inclusion or exclusion of

the RTI as a control variable. The same conclusions can be drawn when we trim the

data to remove those observations that lie beneath/above the 5th and 95th percentile

of the RTI distribution, respectively (Appendix Table 6). In addition, the same holds

when we use an alternative way to calculate the standard errors and use a three-way

cluster approach, namely, we cluster by year, NACE 2-digit industries, and ISCO 1-digit

occupations.

We also report results for the original VTR index developed by Chernoff and Warman

(2023). As mentioned in Section 4.1, we use an adjusted VTR index stemming from

Prettner and Stoellinger (2023). This adjusted VTR includes two more variables from the

US O*NET database, which are “Performing for or Working Directly with the Public” and

“Assisting and Caring for Others”, both stemming from the category of work activities.

The motivation for including these two variables is to reflect even more strongly than

in the original Chernoff-Warman-Index the tight relationship between social interaction

20



and the viral infection risk.

The results in Appendix Table 8 replicate the main results in the paper using the

original index. The results are the same as reported in Table 2 in the main text. The

additional results with the original VTR, which we refer to as alternative index, illustrate

that the refinement of the VTR is not driving the results reported in the main text (in

Table 2).
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Table 5: COVID-related shadow cost of labor and labor market outcomes, alternative
specification

Dependent variable: Employment (log) Work volume (log)

Non Non
Sample: Automatable automatable All Automatable automatable All

occupations occupations occupations occupations occupations occupations

(1) (2) (3) (4) (5) (6)

Female workers 0.0013 -0.0114 -0.0073 -0.2361*** -0.2397*** -0.2470***
(0.0398) (0.0286) (0.0292) (0.0380) (0.0250) (0.0257)

Medium-skill 0.1572** 0.2104*** 0.1633*** 0.1596** 0.2507*** 0.1741**
(0.0555) (0.0238) (0.0438) (0.0639) (0.0381) (0.0519)

High-skill 0.0336 0.2019* 0.1009 0.0313 0.2768** 0.1251
(0.0746) (0.0865) (0.0682) (0.0887) (0.1007) (0.0836)

Age 25-49 0.1306*** 0.1150** 0.1191*** 0.1578** 0.2038*** 0.1715***
(0.0323) (0.0358) (0.0277) (0.0531) (0.0540) (0.0430)

Age 50-64 -0.0377 -0.0383 -0.0408 -0.0518 0.0423 -0.0154
(0.0437) (0.0470) (0.0362) (0.0514) (0.0682) (0.0482)

Age 65 or more -0.4825*** -0.4592*** -0.4530*** -1.4977*** -1.1989*** -1.3244***
(0.0435) (0.0692) (0.0425) (0.0615) (0.1148) (0.0893)

VTR 0.6231* 0.3379*** 0.4560** 0.5504 0.3999** 0.4614**
(0.3143) (0.0780) (0.1314) (0.2851) (0.1128) (0.1660)

VTR x COVID -0.0803*** 0.0575 0.0235 -0.1548*** 0.0430 -0.0108
(0.0185) (0.0483) (0.0396) (0.0348) (0.0925) (0.0692)

COVID 0.0229*** -0.0181 -0.0127 -0.0107 -0.0804** -0.0641**
(0.0053) (0.0224) (0.0177) (0.0143) (0.0317) (0.0252)

Constant 4.2066*** 4.3017*** 4.2850*** 11.6811*** 11.6729*** 11.7215***
(0.1244) (0.0700) (0.0578) (0.1144) (0.1092) (0.0854)

Industry FE � � � � � �
Occupation FE � � � � � �
Region FE � � � � � �
Observations 96,671 75,141 171,812 92,693 72,185 164,878
R-sq. 0.3504 0.3471 0.3323 0.3262 0.3049 0.3014

Note: *, ** and *** indicate statistical significance at the 10%, 5% and 1% level respectively. Two-way standard
errors clustered at the level of ISCO-1-digit occupations and years in parenthesis.

As with the results in the main text, the coefficient of the interaction term V TR ·
COV ID is negative and statistically significant only for the automatable occupations.

Moreover, the magnitude of the coefficients are very similar in the two variants of the

model. This is true for the model featuring employment as the dependent variable as

well as that featuring hours worked.
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Table 6: COVID-related shadow cost of labor and labor market outcomes, trimmed data
(RTI)

Dependent variable: Employment (log) Work volume (log)

Non Non
Sample: Automatable automatable All Automatable automatable All

occupations occupations occupations occupations occupations occupations

(1) (2) (3) (4) (5) (6)

Female workers 0.0142 -0.0117 -0.00352 -0.214*** -0.249*** -0.242***
(0.0423) (0.0362) (0.0344) (0.0413) (0.0324) (0.0313)

Medium-skill 0.164** 0.221*** 0.169*** 0.170** 0.265*** 0.183**
(0.0588) (0.0250) (0.0453) (0.0681) (0.0371) (0.0534)

High-skill 0.0334 0.159* 0.0784 0.0351 0.227** 0.0997
(0.0780) (0.0694) (0.0632) (0.0926) (0.0811) (0.0774)

Age 25-49 0.133*** 0.108** 0.118*** 0.159** 0.184** 0.164***
(0.0329) (0.0351) (0.0293) (0.0509) (0.0511) (0.0416)

Age 50-64 -0.0364 -0.0509 -0.0447 -0.0493 0.00972 -0.0280
(0.0442) (0.0498) (0.0383) (0.0493) (0.0662) (0.0450)

Age 65 or more -0.487*** -0.460*** -0.453*** -1.488*** -1.217*** -1.329***
(0.0452) (0.0810) (0.0486) (0.0633) (0.126) (0.0915)

RTI -0.432* -0.0186 -0.0883 -0.650*** -0.319 -0.177
(0.191) (0.207) (0.0804) (0.123) (0.213) (0.117)

VTR 0.566* 0.321*** 0.424** 0.480* 0.333** 0.413*
(0.274) (0.0821) (0.140) (0.216) (0.121) (0.189)

VTR x COVID -0.0636** 0.0655 0.0387 -0.146** 0.0381 -0.00571
(0.0220) (0.0892) (0.0364) (0.0428) (0.107) (0.0465)

COVID 0.0169* -0.0157 -0.0167 -0.0168 -0.0755* -0.0671***
(0.00787) (0.0363) (0.0160) (0.0162) (0.0341) (0.0174)

Constant 4.521*** 4.337*** 4.354*** 12.15*** 11.87*** 11.85***
(0.204) (0.0789) (0.0798) (0.143) (0.125) (0.122)

Industry FE � � � � � �
Occupation FE � � � � � �
Region FE � � � � � �
Observations 91,128 65,455 156,583 87,394 62,888 150,282
R-sq. 0.351 0.351 0.333 0.329 0.313 0.305

Note: *, ** and *** indicate statistical significance at the 10%, 5% and 1% level respectively. Two-way standard
errors clustered at the level of ISCO-1-digit occupations and years in parenthesis.
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Table 7: COVID-related shadow cost of labor and labor market outcomes, alternative
clustering

Dependent variable: Employment (log) Work volume (log)

Non Non
Sample: Automatable automatable All Automatable automatable All

occupations occupations occupations occupations occupations occupations

(1) (2) (3) (4) (5) (6)

Female workers 0.0155 -0.0123 -0.00249 -0.214*** -0.240*** -0.241***
(0.0454) (0.0341) (0.0347) (0.0470) (0.0320) (0.0328)

Medium-skill 0.160** 0.210*** 0.163*** 0.163** 0.251*** 0.174**
(0.0534) (0.0266) (0.0430) (0.0623) (0.0414) (0.0510)

High-skill 0.0362 0.202* 0.100 0.0352 0.277** 0.124
(0.0745) (0.0891) (0.0687) (0.0901) (0.102) (0.0842)

Age 25-49 0.130*** 0.115** 0.119*** 0.157** 0.204** 0.171***
(0.0311) (0.0376) (0.0287) (0.0523) (0.0553) (0.0445)

Age 50-64 -0.0382 -0.0389 -0.0408 -0.0525 0.0418 -0.0154
(0.0442) (0.0505) (0.0394) (0.0520) (0.0718) (0.0522)

Age 65 or more -0.484*** -0.461*** -0.455*** -1.500*** -1.200*** -1.326***
(0.0466) (0.0695) (0.0487) (0.0565) (0.120) (0.0967)

RTI -0.386* -0.133 -0.143 -0.592** -0.122 -0.183
(0.192) (0.217) (0.113) (0.200) (0.213) (0.162)

VTR 0.573* 0.321 0.410 0.473* 0.384 0.403
(0.282) (0.318) (0.262) (0.242) (0.359) (0.311)

VTR x COVID -0.0772** 0.0596 0.0296 -0.151* 0.0447 -0.00320
(0.0315) (0.0338) (0.0220) (0.0747) (0.0527) (0.0440)

COVID 0.0207* -0.0188 -0.0155 -0.0138 -0.0811*** -0.0676***
(0.0103) (0.0145) (0.0108) (0.0230) (0.0184) (0.0157)

Constant 4.486*** 4.357*** 4.380*** 12.11*** 11.72*** 11.84***
(0.205) (0.175) (0.136) (0.179) (0.229) (0.194)

Industry FE � � � � � �
Occupation FE � � � � � �
Region FE � � � � � �
Observations 96,671 75,141 171,812 92,693 72,185 164,878
R-sq. 0.351 0.347 0.333 0.328 0.305 0.302

Note: *, ** and *** indicate statistical significance at the 10%, 5% and 1% level respectively. Three-way standard
errors clustered at the level of ISCO-1-digit occupations, nace 2 digits and years in parenthesis.
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Table 8: COVID-related shadow cost of labor and market outcomes - alternative index

Dependent variable: Employment (log) Work volume (log)

Non Non
Sample: Automatable automatable All Automatable automatable All

occupations occupations occupations occupations occupations occupations

(1) (2) (3) (4) (5) (6)

Female workers 0.0212 -0.0125 0.0004 -0.2104*** -0.2401*** -0.2377***
(0.0397) (0.0280) (0.0307) (0.0388) (0.0272) (0.0285)

Medium-skill 0.1603** 0.2103*** 0.1634** 0.1636** 0.2506*** 0.1741**
(0.0560) (0.0237) (0.0442) (0.0652) (0.0378) (0.0522)

High skill 0.0373 0.2024* 0.1008 0.0357 0.2771** 0.1247
(0.0747) (0.0884) (0.0685) (0.0892) (0.1012) (0.0840)

Age 25-49 0.1313*** 0.1149** 0.1193*** 0.1581** 0.2036*** 0.1717***
(0.0314) (0.0359) (0.0283) (0.0523) (0.0544) (0.0433)

Age 50-64 -0.0362 -0.0388 -0.0398 -0.0506 0.0418 -0.0145
(0.0427) (0.0471) (0.0364) (0.0502) (0.0687) (0.0484)

Age 65 or more -0.4824*** -0.4604*** -0.4534*** -1.4980*** -1.1997*** -1.3252***
(0.0447) (0.0683) (0.0436) (0.0631) (0.1166) (0.0921)

VTR* 0.5442** 0.3486*** 0.3815** 0.4854** 0.3958** 0.3598*
(0.1952) (0.0872) (0.1211) (0.1590) (0.1279) (0.1653)

VTR x COVID -0.0652** 0.0875 0.0544 -0.1109** 0.0674 0.0280
(0.0196) (0.0647) (0.0332) (0.0402) (0.1001) (0.0574)

RTI -0.4895*** -0.1829 -0.2123* -0.6769*** -0.1843 -0.2503*
(0.0784) (0.1121) (0.0951) (0.0466) (0.1740) (0.1233)

COVID 0.0183*** -0.0315 -0.0266 -0.0256 -0.0913** -0.0806***
(0.0024) (0.0300) (0.0157) (0.0177) (0.0356) (0.0215)

Constant 4.5478*** 4.3583*** 4.4181*** 12.1461*** 11.7353*** 11.8863***
(0.1300) (0.0934) (0.0767) (0.0839) (0.1702) (0.1271)

Industry FE � � � � � �
Occupation FE � � � � � �
Region FE � � � � � �
Observations 96,671 75,141 171,812 92,693 72,185 164,878
R-sq. 0.3517 0.3475 0.3325 0.3282 0.3050 0.3016

Note: *, ** and *** indicate statistical significance at the 10%, 5% and 1% level respectively. Two-way standard
errors clustered at the level of ISCO-1-digit occupations and years in parenthesis.
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