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Macroeconomic shocks

Last financial crisis showed that financial stability is crucial for business cycles
dynamics:

É How shocks affect financial stability?

É Are sentiments a source of instability?

Sentiments and the business cycle

É Sentiments are associated with lower growth (López-Salido et al., 2017).

É Points to narratives of Minsky (1977) and Kindleberger (1978).

Credit market sentiment shock

É news about the future affect decisions today,

É expectation formation on financial markets,
É rational expectations (Fama, 1970),
É set of heuristics (Anufriev and Hommes, 2012),
É diagnostic expectations (Bordalo et al., 2018).
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Financial markets and credit cycles

Financial markets as amplifier and propagator of shocks

É financial frictions (Bernanke and Gertler, 1989; Kiyotaki and Moore,
1997),

É balance-sheet measures as driving force (Mian et al., 2017; Schularick
and Taylor, 2012).

Endogenous credit cycles

É cyclicity still hinges on financial frictions (Matsuyama et al., 2016),

É Kubin et al. (2019) introduce the lenders’ perception of risk and
sentiments on the credit market.

Credit market sentiments

É typically operationalized via credit spreads (López-Salido et al., 2017),

É credit quality predicts recession better than credit growth (Greenwood
and Hanson, 2013),

É Bordalo et al. (2018) set up a model with a new belief formation
mechanism to explain credit cycle fluctuations
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This paper

Research Questions:

É How do credit market sentiments impact business cycle fluctuations?

É Does the effect depend on the general credit market perception
(optimistic vs. pessimistic sentiment)?

We provide an empirical validation of theoretical models for the US economy

É by employing a threshold BVAR approach,

É with monthly data between 1968 and 2015 from the FRED (McCracken
and Ng, 2016).

Identification of a credit market sentiment shock through

É implementation of an unexpected sentiment news shock,

É by utilizing a set of expectation formation mechanisms.
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Credit market sentiment

Figure 1: Baa spread 1968 – 2015.
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Expectation formation

Credit market sentiment process {ωt}Tt=1 is characterized by AR(1)

ωt = ϕωt−1 + εt , εt ∼N (0, exp(ht)),

with stochastic volatility (Kastner and Früwirth-Schnatter, 2014)

ht = µ+φ(ht−1 −µ) +ηt , ηt ∼N (0,σ2
h).

É Bordalo et al. (2018) show predictability of forecast error using rational
expectations model.

É Calls for other expectation formation mechanism.
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Diagnostic Expectations

Behavioral theory following Bordalo et al. (2018):

É based on the representativeness heuristic (Kahneman and Tversky,
1972)

É define distorted probability distribution pθ (·)

pθ (ω̂t+1) = p(ω̂t+1 |ωt = ω̂t)×
�

p(ω̂t+1 |ωt = ω̂t)

p(ω̂t+1 |ωt = ϕω̂t−1)

�θ
1

Z
, (1)

É θ measures the severity of judging according to representativeness.

Taking expectations yields

Eθt (ω̂t+1) = Et(ω̂t+1) + θ [Et(ω̂t+1)−Et−1(ω̂t+1)]. (2)
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Diagnostic Expectations

Figure 1: Rational Expectations in t .
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Diagnostic Expectations

Figure 1: Rational Expectations in t and t − 1.
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Diagnostic Expectations

Figure 1: Rational Expectations in t and t − 1.
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Diagnostic Expectations

Figure 1: Rational and Diagnostic Expectations.
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Credit Market Sentiment

Figure 1: Baa spread 1968 – 2015 and its diagnostic expectations.
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Credit Market Sentiment

Figure 1: Baa spread 1968 – 2015 and its diagnostic expectations.
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Credit Market Sentiment

Figure 1: Baa spread 1968 – 2015 and its diagnostic expectations.
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Credit Market Sentiment

Figure 2: Baa spread 1998 – 2004 and its diagnostic expectations.
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Bayesian Threshold Vector Autoregression

Non-linear M-dimensional VAR of {Yt}Tt=1:

Yt =

¨

c1 +
∑p

j=1 A1jYt−j +Λ1et , if St = 1,

c2 +
∑p

j=1 A2jYt−j +Λ2et , if St = 2,
(3)

with

É Yt = {ωt , yt , Lt ,πt , it},
É ci is a M × 1 intercept vector for regime i ,

É Aij is a M ×M coefficient matrix of lag j for regime i ,

É Λi is the lower triangular Cholesky factor of regime i where Σi = ΛiΛ
T
i

holds,

É et ∼NM(0, IM),

É {St}Tt=1 is a latent indicator vector.
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Data & Threshold Variable

Time series process Yt = {ωt , yt , Lt ,πt , it} with sample period 1968M1 –
2015M12.

É ωt : difference of Baa corporate bond yield and the 10-year Treasury yield
(Greenwood and Hanson, 2013)

É yt : industrial production growth rate

É Lt : business loans growth rate

É πt : inflation

É it : Federal funds rate extended with shadow rate (Wu and Xia, 2016)

We use the credit sentiment variable, ωt , as threshold variable:

St = 1⇐⇒ωt−d ≤ γ,

St = 2⇐⇒ωt−d > γ,
(4)

É with latent threshold parameter γ and

É delay parameter d .
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Identification based on External Instruments

Approach by Mertens and Ravn (2013) and Gertler and Karadi (2015) with the
following assumptions for the structural shocks

E(Zt e
ωᵀ
t ) = Φ,

E(Zt e
−ωᵀ
t ) = 0.

(5)

We use the fitted values from regressing the instrument on the reduced form
errors

ε−ωt = βε̂ωt + νt , νt ∼ N(0,σ2
ε). (6)

We use news on the financial market as external instrument:

É Zt is the realized forecast error of the predicted credit market sentiment,

É expectation formation mechanism:
É diagnostic expectations,
É rational expectations,
É a set of heuristics (Anufriev and Hommes, 2012).
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Prior setup

Adaptive shrinkage priors following Huber and Feldkircher (2019) illustrated as
follows

βij |ψij ,λ
2
j ∼ N(0,

2

λ2
j

ψij),

ψij ∼ G(ϑ,ϑ), ϑ ∼ Exp(1),

λ2
j =

j
∏

k=1

ζk , ζk ∼ G(0.01, 0.01).

(7)

MCMC algorithm relies on data augmentation

É conditional on the regime allocation we draw the VAR coefficients
regime-wise using the triangular algorithm (Carriero et al., 2019)

É conditional on the parameters we draw the threshold parameter γ using
an adaptive RW-MH step (Haario et al., 2001)

É draw the delay parameter d using an independent MH step (Chen and
Lee, 1995)
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Regime Allocation

Figure 3: Regime allocation probabilities
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Threshold VAR
(unexpected 100 basis point Baa spread increase→ news shock)

Figure 4: Identification based on the External Instrument.
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Concluding remarks

Our results suggest:

É macrofundamentals are affected by sentiment shocks

É strong asymmetries across ’optimistic’ and ’pessimistic’ credit market
sentiment regimes

É only moderate to rather muted effects in the ’optimistic’ regime

É strong impact on the business and credit cycle in the ’pessimistic’ regime

Diagnostic expectations and market sentiments in a nonlinear are an
interesting tool for macroeconometric analysis.
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Prior setup

Adaptive shrinkage priors following Huber and Feldkircher (2019) illustrated as
follows

βij |ψij ,λ
2
j ∼ N(0,

2

λ2
j

ψij),

ψij ∼ G(ϑ,ϑ), ϑ ∼ Exp(1),

λ2
j =

j
∏

k=1

ζk , ζk ∼ G(0.01, 0.01).

(8)

MCMC algorithm relies on data augmentation

É conditional on the regime allocation we draw the VAR coefficients
regime-wise using the triangular algorithm (Carriero et al., 2019)

É conditional on the parameters we draw the threshold parameter γ using
an adaptive RW-MH step (Haario et al., 2001)

É draw the delay parameter d using an independent MH step (Chen and
Lee, 1995)
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Normal-Gamma prior

−2 −1 0 1 2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

m
ar

gi
na

l.b
et

a(
x,

 1
, 0

.1
)

10 15 20 25 30

0e
+0

0
2e

−0
5

4e
−0

5
6e

−0
5

8e
−0

5
1e

−0
4

ϑ = 0.1
ϑ = 0.5
ϑ = 1.0
Gaussian

Figure 5: Normal-Gamma prior with varying degrees of shrinkage.
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Standard VAR without threshold
(unexpected 100 basis point Baa spread increase→ news shock)

Figure 6: Identification based on the External Instrument.
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Alternative belief formation mechanisms

Figure 7: Identification via different heuristics (light gray) compared to identification via
diagnostic expectations (dark gray) and the resulting overlap (medium gray).

25 / 21



Diagnostic Expectations

First and second moment:

µθ = µ0 +
θσ2

0

σ2
−1 + θ(σ

2
−1 −σ

2
0)
(µ0 −µ−1),

σ2
θ = σ

2
0

σ2
−1

σ2
−1 + θ(σ

2
−1 −σ

2
0)

,

(9)

with
Eθt (ωt+1) = Et(ωt+1) + θ [Et(ωt+1)−Et−1(ωt+1)], (10)

where
µ0 = Et(ωt+1) = ρX̂t ,

σ2
0 = σ

2
t ,

(11)

and
µ−1 = Et−1(ωt+1) = ρ

2ωt−1,

σ2
−1 = σ

2
t−1.

(12)

26 / 21


	Motivation
	Econometric Framework
	Results
	Conclusion
	References
	Appendix

