The Impact of Credit Market Sentiment Shocks

Maximilian Böck¹ and Thomas O. Zörner^{2,1}

¹ Vienna University of Economics and Business ²Oesterreichische Nationalbank (OeNB)

NHF Economic Research Seminar, Bratislava November, 2021

Opinions expressed by the authors do not necessarily reflect the official viewpoint of the Oesterreichische Nationalbank or the Eurosystem.

Macroeconomic shocks

Last financial crisis showed that financial stability is crucial for business cycles dynamics:

- ► How shocks affect financial stability?
- Are sentiments a source of instability?

Sentiments and the business cycle

- Sentiments are associated with lower growth (López-Salido et al., 2017).
- Points to narratives of Minsky (1977) and Kindleberger (1978).

Credit market sentiment shock

- news about the future affect decisions today,
- expectation formation on financial markets,
 - rational expectations (Fama, 1970),
 - set of heuristics (Anufriev and Hommes, 2012),
 - diagnostic expectations (Bordalo et al., 2018).

Financial markets and credit cycles

Financial markets as amplifier and propagator of shocks

- financial frictions (Bernanke and Gertler, 1989; Kiyotaki and Moore, 1997),
- balance-sheet measures as driving force (Mian et al., 2017; Schularick and Taylor, 2012).

Endogenous credit cycles

- cyclicity still hinges on financial frictions (Matsuyama et al., 2016),
- Kubin et al. (2019) introduce the lenders' perception of risk and sentiments on the credit market.

Credit market sentiments

- typically operationalized via credit spreads (López-Salido et al., 2017),
- credit quality predicts recession better than credit growth (Greenwood and Hanson, 2013),
- Bordalo et al. (2018) set up a model with a new belief formation mechanism to explain credit cycle fluctuations

This paper

Research Questions:

- How do credit market sentiments impact business cycle fluctuations?
- Does the effect depend on the general credit market perception (optimistic vs. pessimistic sentiment)?

We provide an empirical validation of theoretical models for the US economy

- ▶ by employing a threshold BVAR approach,
- with monthly data between 1968 and 2015 from the FRED (McCracken and Ng, 2016).

Identification of a credit market sentiment shock through

- implementation of an unexpected sentiment news shock,
- by utilizing a set of expectation formation mechanisms.

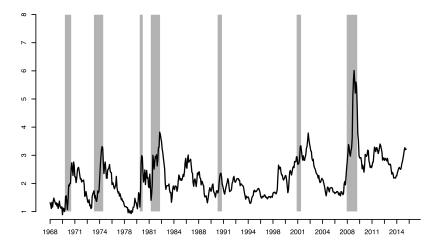


Figure 1: Baa spread 1968 - 2015.

Expectation formation

Credit market sentiment process $\{\omega_t\}_{t=1}^T$ is characterized by AR(1)

$$\omega_t = \varphi \omega_{t-1} + \varepsilon_t, \qquad \varepsilon_t \sim \mathcal{N}(0, \exp(h_t)),$$

with stochastic volatility (Kastner and Früwirth-Schnatter, 2014)

$$h_t = \mu + \phi(h_{t-1} - \mu) + \eta_t, \qquad \eta_t \sim \mathcal{N}(0, \sigma_h^2).$$

- Bordalo et al. (2018) show predictability of forecast error using rational expectations model.
- Calls for other expectation formation mechanism.

Behavioral theory following Bordalo et al. (2018):

- based on the representativeness heuristic (Kahneman and Tversky, 1972)
- define distorted probability distribution $p^{\theta}(\cdot)$

$$p^{\theta}(\hat{\omega}_{t+1}) = p(\hat{\omega}_{t+1} \mid \omega_t = \hat{\omega}_t) \times \left[\frac{p(\hat{\omega}_{t+1} \mid \omega_t = \hat{\omega}_t)}{p(\hat{\omega}_{t+1} \mid \omega_t = \varphi \hat{\omega}_{t-1})}\right]^{\theta} \frac{1}{Z}, \quad (1)$$

 $\blacktriangleright \ \theta$ measures the severity of judging according to representativeness. Taking expectations yields

$$\mathbb{E}_t^{\theta}(\hat{\omega}_{t+1}) = \mathbb{E}_t(\hat{\omega}_{t+1}) + \theta[\mathbb{E}_t(\hat{\omega}_{t+1}) - \mathbb{E}_{t-1}(\hat{\omega}_{t+1})].$$
(2)

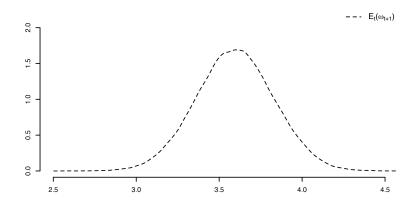


Figure 1: Rational Expectations in t.

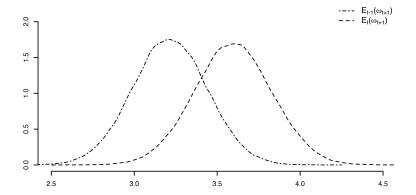


Figure 1: Rational Expectations in *t* and t-1.

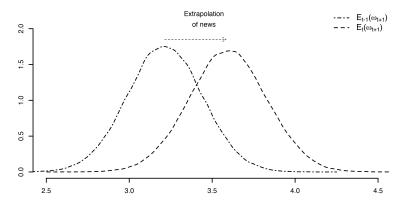


Figure 1: Rational Expectations in *t* and t-1.

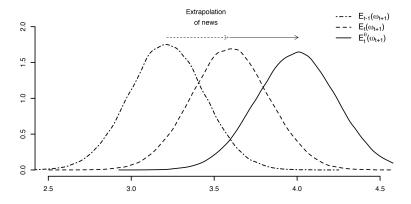


Figure 1: Rational and Diagnostic Expectations.

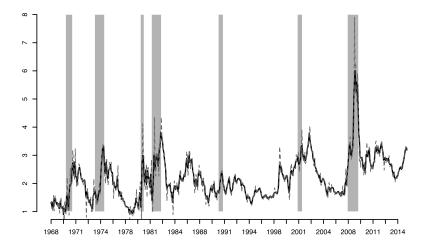


Figure 1: Baa spread 1968 - 2015 and its diagnostic expectations.

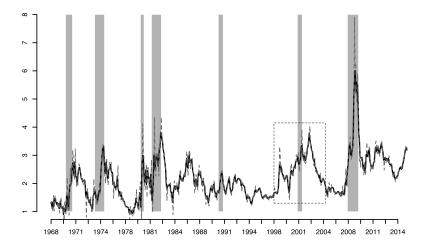


Figure 1: Baa spread 1968 - 2015 and its diagnostic expectations.

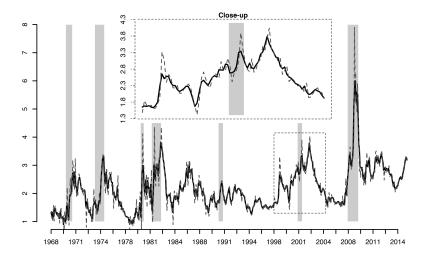


Figure 1: Baa spread 1968 – 2015 and its diagnostic expectations.

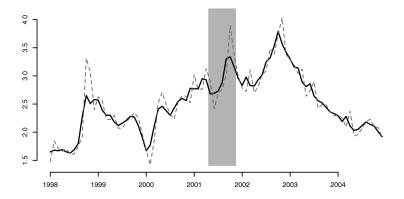


Figure 2: Baa spread 1998 - 2004 and its diagnostic expectations.

Bayesian Threshold Vector Autoregression

Non-linear *M*-dimensional VAR of $\{\mathbf{Y}_t\}_{t=1}^T$:

$$\mathbf{Y}_{t} = \begin{cases} \mathbf{c}_{1} + \sum_{j=1}^{p} \mathbf{A}_{1j} \mathbf{Y}_{t-j} + \mathbf{\Lambda}_{1} \mathbf{e}_{t}, & \text{if } S_{t} = 1, \\ \mathbf{c}_{2} + \sum_{j=1}^{p} \mathbf{A}_{2j} \mathbf{Y}_{t-j} + \mathbf{\Lambda}_{2} \mathbf{e}_{t}, & \text{if } S_{t} = 2, \end{cases}$$
(3)

with

$$\blacktriangleright \mathbf{Y}_t = \{\boldsymbol{\omega}_t, \boldsymbol{y}_t, \boldsymbol{L}_t, \boldsymbol{\pi}_t, \boldsymbol{i}_t\},\$$

- **c**_{*i*} is a $M \times 1$ intercept vector for regime *i*,
- ► \mathbf{A}_{ii} is a $M \times M$ coefficient matrix of lag *j* for regime *i*,
- Λ_i is the lower triangular Cholesky factor of regime *i* where $\Sigma_i = \Lambda_i \Lambda_i^T$ holds,
- ► $\mathbf{e}_t \sim \mathcal{N}_M(\mathbf{0}, \mathbf{I}_M),$
- $\{S_t\}_{t=1}^T$ is a latent indicator vector.

Data & Threshold Variable

Time series process $\mathbf{Y}_t = \{\omega_t, y_t, L_t, \pi_t, i_t\}$ with sample period 1968M1 – 2015M12.

- ► ω_t : difference of Baa corporate bond yield and the 10-year Treasury yield (Greenwood and Hanson, 2013)
- y_t : industrial production growth rate
- L_t: business loans growth rate
- ▶ π_t : inflation
- \blacktriangleright *i*_t: Federal funds rate extended with shadow rate (Wu and Xia, 2016)

We use the credit sentiment variable, ω_t , as threshold variable:

$$S_t = 1 \iff \omega_{t-d} \le \gamma,$$

$$S_t = 2 \iff \omega_{t-d} > \gamma,$$
(4)

- with latent threshold parameter γ and
- ► delay parameter d.

Identification based on External Instruments

Approach by Mertens and Ravn (2013) and Gertler and Karadi (2015) with the following assumptions for the structural shocks

$$\mathbb{E}(\mathbf{Z}_{t}\boldsymbol{e}_{t}^{\omega\mathsf{T}}) = \boldsymbol{\Phi},$$

$$\mathbb{E}(\mathbf{Z}_{t}\boldsymbol{e}_{t}^{-\omega\mathsf{T}}) = \boldsymbol{0}.$$
(5)

We use the fitted values from regressing the instrument on the reduced form errors

$$\varepsilon_t^{-\omega} = \beta \hat{\varepsilon}_t^{\omega} + \nu_t, \quad \nu_t \sim N(0, \sigma_{\varepsilon}^2).$$
(6)

We use news on the financial market as external instrument:

- Z_t is the realized forecast error of the predicted credit market sentiment,
- expectation formation mechanism:
 - diagnostic expectations,
 - rational expectations,
 - a set of heuristics (Anufriev and Hommes, 2012).

Prior setup

Adaptive shrinkage priors following Huber and Feldkircher (2019) illustrated as follows

$$\beta_{ij} \mid \psi_{ij}, \lambda_j^2 \sim N(0, \frac{2}{\lambda_j^2} \psi_{ij}),$$

$$\psi_{ij} \sim G(\vartheta, \vartheta), \quad \vartheta \sim Exp(1),$$

$$\lambda_j^2 = \prod_{k=1}^j \zeta_k, \quad \zeta_k \sim G(0.01, 0.01).$$
(7)

MCMC algorithm relies on data augmentation

- conditional on the regime allocation we draw the VAR coefficients regime-wise using the triangular algorithm (Carriero et al., 2019)
- conditional on the parameters we draw the threshold parameter γ using an adaptive RW-MH step (Haario et al., 2001)
- draw the delay parameter *d* using an independent MH step (Chen and Lee, 1995)

Regime Allocation

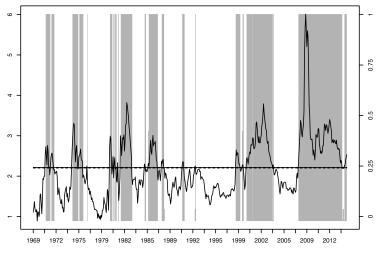


Figure 3: Regime allocation probabilities

Threshold VAR

(unexpected 100 basis point Baa spread increase \rightarrow news shock)

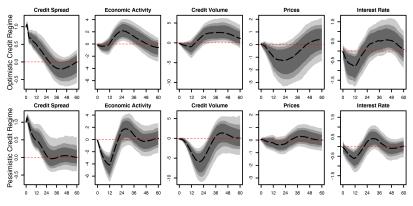


Figure 4: Identification based on the External Instrument.

Concluding remarks

Our results suggest:

- macrofundamentals are affected by sentiment shocks
- strong asymmetries across 'optimistic' and 'pessimistic' credit market sentiment regimes
- only moderate to rather muted effects in the 'optimistic' regime
- strong impact on the business and credit cycle in the 'pessimistic' regime

Diagnostic expectations and market sentiments in a nonlinear are an interesting tool for macroeconometric analysis.

References I

- Anufriev, Mikhail and Cars Hommes (2012). 'Evolutionary selection of individual expectations and aggregate outcomes in asset pricing experiments'. In: *American Economic Journal: Microeconomics* 4.4, pp. 35–64.
- Bernanke, Ben S. and Mark Gertler (1989). 'Agency Costs, Net Worth, and Business Fluctuations'. In: *American Economic Review* 79, pp. 14–31.
 - Bordalo, Pedro, Nicola Gennaioli, and Andrei Shleifer (2018). 'Diagnostic expectations and credit cycles'. In: *The Journal of Finance* 73.1, pp. 199–227.
- Carriero, Andrea, Todd E Clark, and Massimiliano Marcellino (2019). 'Large Bayesian vector autoregressions with stochastic volatility and non-conjugate priors'. In: *Journal of Econometrics*.
- Chen, Cathy WS and Jack C Lee (1995). 'Bayesian inference of threshold autoregressive models'. In: *Journal of Time Series Analysis* 16.5, pp. 483–492.
- Fama, Eugene F. (1970). 'Efficient Capital Markets: A Review of Theory and Empirical Work'. In: *The Journal of Finance* 25.2, pp. 383–417.

References II

- Gertler, Mark and Peter Karadi (2015). 'Monetary policy surprises, credit costs, and economic activity'. In: *American Economic Journal: Macroeconomics* 7.1, pp. 44–76.

-

Greenwood, Robin and Samuel G Hanson (2013). 'Issuer quality and corporate bond returns'. In: *The Review of Financial Studies* 26.6, pp. 1483–1525.

- Haario, Heikki, Eero Saksman, Johanna Tamminen, et al. (2001). 'An adaptive Metropolis algorithm'. In: *Bernoulli* 7.2, pp. 223–242.
- Huber, Florian and Martin Feldkircher (2019). 'Adaptive shrinkage in Bayesian vector autoregressive models'. In: *Journal of Business & Economic Statistics* 37.1, pp. 27–39.

Kahneman, Daniel and Amos Tversky (1972). 'Subjective probability: A judgment of representativeness'. In: *Cognitive Psychology* 3.3, pp. 430–454.

Kastner, Gregor and Sylvia Früwirth-Schnatter (2014). 'Ancillarity-sufficiency interweaving strategy (ASIS) for boosting MCMC estimation of stochastic volatility models'. In: *Computational Statistics & Data Analysis* 76, pp. 408–423.

References III

- Kindleberger, Charle P. (1978). *Manias, Panics and Crashes: A History of Financial Crisis*. New York: Basic Books.
- Kiyotaki, Nobuhiro and John Moore (1997). 'Credit cycles'. In: *Journal of Political Economy* 105.2, pp. 211–248.
- Kubin, Ingrid, Thomas O Zörner, Laura Gardini, and Pasquale Commendatore (2019). 'A credit cycle model with market sentiments'. In: *Structural Change and Economic Dynamics*.
- López-Salido, David, Jeremy C Stein, and Egon Zakrajšek (2017). 'Credit-market sentiment and the business cycle'. In: *The Quarterly Journal of Economics* 132.3, pp. 1373–1426.

Matsuyama, Kiminori, Iryna Sushko, and Laura Gardini (2016). 'Revisiting the model of credit cycles with good and bad projects'. In: *Journal of Economic Theory* 163, pp. 525–556.

McCracken, Michael W. and Serena Ng (2016). 'FRED-MD: A Monthly Database for Macroeconomic Research'. In: *Journal of Business & Economic Statistics* 34.4, pp. 574–589.

References IV

Mertens, Karel and Morten O Ravn (2013). 'The dynamic effects of personal and corporate income tax changes in the United States'. In: *American Economic Review* 103.4, pp. 1212–47.

- Mian, Atif, Amir Sufi, and Emil Verner (2017). 'Household debt and business cycles worldwide'. In: *The Quarterly Journal of Economics* 132.4, pp. 1755–1817.
- Minsky, Hyman P. (1977). 'The Financial Instability Hypothesis: An Interpretation of Keynes and an Alternative to "Standard" Theory'. In: *Challenge* 20.1, pp. 20–27.
- Schularick, Moritz and Alan M Taylor (2012). 'Credit booms gone bust: Monetary policy, leverage cycles, and financial crises, 1870-2008'. In: *American Economic Review* 102.2, pp. 1029–61.

Wu, Jing Cynthia and Fan Dora Xia (2016). 'Measuring the macroeconomic impact of monetary policy at the zero lower bound'. In: *Journal of Money, Credit and Banking* 48.2-3, pp. 253–291.

Prior setup

Adaptive shrinkage priors following Huber and Feldkircher (2019) illustrated as follows

$$\beta_{ij} \mid \psi_{ij}, \lambda_j^2 \sim N(0, \frac{2}{\lambda_j^2} \psi_{ij}),$$

$$\psi_{ij} \sim G(\vartheta, \vartheta), \quad \vartheta \sim Exp(1),$$

$$\lambda_j^2 = \prod_{k=1}^j \zeta_k, \quad \zeta_k \sim G(0.01, 0.01).$$
(8)

MCMC algorithm relies on data augmentation

- conditional on the regime allocation we draw the VAR coefficients regime-wise using the triangular algorithm (Carriero et al., 2019)
- conditional on the parameters we draw the threshold parameter γ using an adaptive RW-MH step (Haario et al., 2001)
- draw the delay parameter *d* using an independent MH step (Chen and Lee, 1995)

Normal-Gamma prior

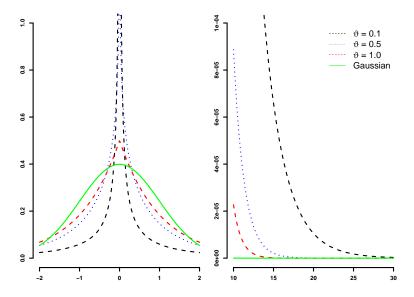


Figure 5: Normal-Gamma prior with varying degrees of shrinkage.

Standard VAR without threshold

(unexpected 100 basis point Baa spread increase \rightarrow news shock)

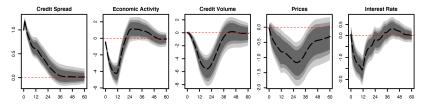


Figure 6: Identification based on the External Instrument.

Alternative belief formation mechanisms

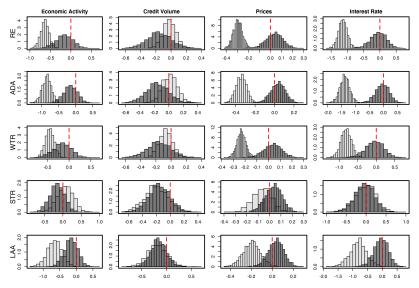


Figure 7: Identification via different heuristics (light gray) compared to identification via diagnostic expectations (dark gray) and the resulting overlap (medium gray).

First and second moment:

$$\mu_{\theta} = \mu_{0} + \frac{\theta \sigma_{0}^{2}}{\sigma_{-1}^{2} + \theta (\sigma_{-1}^{2} - \sigma_{0}^{2})} (\mu_{0} - \mu_{-1}),$$

$$\sigma_{\theta}^{2} = \sigma_{0}^{2} \frac{\sigma_{-1}^{2}}{\sigma_{-1}^{2} + \theta (\sigma_{-1}^{2} - \sigma_{0}^{2})},$$
(9)

with

$$\mathbb{E}_{t}^{\theta}(\omega_{t+1}) = \mathbb{E}_{t}(\omega_{t+1}) + \theta[\mathbb{E}_{t}(\omega_{t+1}) - \mathbb{E}_{t-1}(\omega_{t+1})], \quad (10)$$

where

$$\mu_0 = \mathbb{E}_t(\omega_{t+1}) = \rho \hat{X}_t,$$

$$\sigma_0^2 = \sigma_t^2,$$
(11)

and

$$\mu_{-1} = \mathbb{E}_{t-1}(\omega_{t+1}) = \rho^2 \omega_{t-1},$$

$$\sigma_{-1}^2 = \sigma_{t-1}^2.$$
(12)